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Introduction 
 
There is no single layer of abstraction to executable code. It has many, the lowest of 
which is binary. 
It is important to understand that binary can represent anything. Executable code and data 
are, at the lowest level, the exact same thing: a collection of 1’s and 0’s. You can try to 
run data as code, but most likely that will just cause a crash. Trying to use executable 
code as, for example, picture data will also be either invalid or, at best, just random. This 
is because there is a structure to both of them which allows them to become more than 
just binary. To be useful, you need something that understands this structure and will 
interpret it in the proper way. 
As a more concrete (non-binary) example, one could have four numbers: 
 
112,43,149,184 
 
They could mean pretty much anything. If I were to tell you it was a line for example, 
one could imagine it being a line in 2 dimensions, starting at coordinates (112,43), 
and ending in (149,184). However, if I were to tell you it was a square, you could 
think of it as a square with those coordinates as top-left and bottom-right points. 
It can be anything, it all depends on your interpretation. The problem is, how do we make 
sense of it all? How does the computer know what to do with what? How can WE know 
what it really does? In this essay, I will not go into understanding data, since data 
structures are too diverse (think alone of the image formats you’ve seen). Each file 
format has a different structure. Programs use the file extension as a hint for the structure 
to expect. 
Instead, I will focus on executable code, specifically that for the x86 processor. I will 
start at binary, and eventually end up in C*. 

                                                
* I chose the C programming language because it is very close to regular mathematical notation, and simple expressions 
are fairly easy to read even for non-programmers. If you do have trouble understanding C, there is a plethora of 
information to be found on the web 



Binary to Hexadecimal 
 
As mentioned before, the lowest level of information (in a computing environment) is 
binary. Code, as the computer sees it, is an endless row of 1’s and 0’s. It is nearly 
impossible for humans to follow what is happening by seeing it. If you are interested in 
how the circuits in your CPU work, I suggest getting some electronics books. I do not 
know enough about it to explain in detail how it works (though I have seen it work on 
much simpler processors). For purposes of explanation, binary is a clumsy format, as the 
amount of binary digits is too large for us to easily oversee. That is why we never 
normally edit anything in binary, but instead go to a direct translation, known as 
hexadecimal format. It is just a numbering format. Just as a numerical representation of 
binary has two digits: 0 and 1, and decimal has 10 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), hexadecimal 
has 16: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. You may wonder why this format is 
chosen over the decimal system which we are all used to working with, and is thus much 
more intuitive for us humans. The answer is simple. It is because underneath it all the 
numbers are still binary, being translated. Using 4 bits at a time you can make exactly 16 
different values, from 0 to 15. In hexadecimal, that is from 0 to F. This makes it a very 
practical system to write down 4 bits with one character. I’ve included a quick lookup 
table, if you aren’t familiar with it already. 
 
 

Binary Decimal Hexadecimal 
0000 0 0 
0001 1 1 
0010 2 2 
0011 3 3 
0100 4 4 
0101 5 5 
0110 6 6 
0111 7 7 
1000 8 8 
1001 9 9 
1010 10 A 
1011 11 B 
1100 12 C 
1101 13 D 
1110 14 E 
1111 15 F 

10000 16 10 
 
As you can see, at binary 10000, the hexadecimal value (10) still makes sense, since the 
first digit (1) can still represent 0001, while the second digit (0) represents the 0000, 
resulting in 00010000, which matches the binary. The decimal however is now 16, 
which is not as obvious to convert anymore. 



 
 

Hexadecimal to Assembly Code 
 
Using hexadecimal notation we have a shorthand for writing down binary code, giving us 
more overview. It still makes no sense to a human though, because essentially it is still 
just a lot of numbers. Following is a sample of code in hexadecimal format: 
 
83EC20535657FF158C40400033DBA39881400053 
 
As said, this is just a shorthand for the binary digits it represents. That means it doesn’t 
give any explanation to what it does, but it is a lot shorter than the binary representation: 
The hexadecimal representation is 40 characters, while the binary would be 160 (Since 
every hexadecimal digit represents 4 bits) 
 
The code above is not one big instruction*. It is, in reality, several small ones. On some 
processors, every instruction has a certain size (e.g. 2 bytes) so you can easily chop code 
up into parts of that size to get the different instructions (assuming you have a valid 
starting position). The x86 processor is a little more complex (it is a CISC† architecture 
after all), and has different sized instructions. You might now wonder how we can ever 
split up different instructions this way. The idea is, you take the first byte, look at its 
value, and that byte will tell you how to proceed. Several things could happen: 
 

- It could be a single byte instruction: e.g. 90h‡ is the ‘NOP’ instruction (No 
OPeration) and is only 1 byte in size. 

- The instruction is not yet complete: e.g. Instructions starting with 0Fh need more 
bytes to fully define their function. 

- The instruction is defined by a single byte, but it needs parameters: e.g. 8Bh 
moves one register into another. The byte following 8Bh will describe where it 
moves from, and where it moves to. 

- The instruction is not yet complete and it needs parameters. 
 
Because we will need to know what an instruction is in order to split them up anyway, we 
will combine the process of splitting up the different instructions with translating them to 
a human-readable equivalent. This ‘human-readable equivalent’ is known as ‘assembly 
language’, often abbreviated to ASM. The process of translating a program from raw 
code to ASM, is known as ‘disassembling’ (lit. ‘taking apart’). It takes some skill to read 
ASM. However, since every instruction in ASM performs a fairly trivial task (even on a 

                                                
* The term ‘instruction’ here refers to the actual code bytes, while the term ‘operation’ refers to the task that instruction 
performs. 
† Complex Instruction Set Computer, that means it has a lot of different instructions which do a lot of different detailed 
things. Its counterpart is the RISC (Reduced Instruction Set Computer) where only a few instructions exist, doing 
simple tasks. This allows lower complexity, and single instructions are generally executed faster. However, since less is 
done in a single instruction, it has been long debated which solution is better. 
‡ Hexadecimal values are generally indicated by appending a ‘h’. In C notation, they are represented by preceding the 
value with ‘0x’, for example ‘0x90’ means 90h. 



CISC processor), they are easy to understand by themselves. It takes some experience 
however, to keep an overview of what non-trivial action is being done, more on this later. 
First, we are going to look at the separate instructions. 
 
Since there is no clear system to see what operation a hexadecimal code performs (it is 
basically a matter of looking it up in a reference, and writing it down), it is a rather 
tedious job. However, as it is important to understand how this works, I will demonstrate 
using the example above. 
Let’s take another look at the hexadecimal code: 
 
83EC20535657FF158C40400033DBA39881400053 
 
We will assume the first byte is a valid starting point (and not halfway through an 
instruction, because this would ruin our disassembly process*) and go from there. 
We take the first byte, which is 83h, and we’ll take a manual to look it up. I used the 
table in Appendix A1† to look it up. This says it requires another byte to describe the full 
operation, and that this byte should be in the form of a ‘mod R/M’ byte. To see what the 
full operation is to use the information from this byte and look under “group #1” in 
Appendix A2. In this case, the byte is ECh. A mod R/M byte consist of 3 bitfields: 
 

Bit : 7 6 5 4 3 2 1 0 
Meaning : mod reg R/M 
 
To separate these bitfields, we have to go back to binary, which gives: 
 
EC = 1110 1100 = 11 101 100 
 
Using Appendix A2 we see that for the bitfields matching xx101xxx, the operation is 
SUB. The other two bitfields describe the first operand of the SUB operation. Looking at 
Appendix B, we find that 11 means that it uses a register directly, and 100 means that 
that register is ESP. Using the original description of Appendix A1, we have one more 
operand to fill, the ‘Ib’ (Input byte). Quite simply, the next byte is to be used, which is 
the 3rd byte (20h). 
Putting all this together, we find the first ASM instruction: 
 
83EC20 SUB ESP, 20 
 
Which lets us continue to decode the next instruction (starting with 53h). 
Let’s do one more. Looking up 53h (in Appendix A1) shows it is a single byte 
instruction with no parameters: 
 
PUSH rBX (= PUSH EBX) 
 
 
                                                
* Some programs purposely use this ‘starting point’-problem to confuse disassemblers, to prevent outsiders looking at 
how their program works. This technique is known as ‘obfuscation’. 
† The tables in Appendix A are taken from http://www.sandpile.org 

http://www.sandpile.org


So now we have translated the first 4 bytes into their ASM equivalents: 
 
83EC20  SUB ESP, 20 
53  PUSH EBX 
 
As you probably realized by now, disassembling takes quite long to do manually. 
Luckily, there are plenty of ready made tools (aptly called ‘disassemblers’) to perform 
this process for us (e.g. HIEW). 
Using HIEW, the hexadecimal example is translated to ASM as follows: 
 
83EC20                       sub         esp,020 
53                           push        ebx 
56                           push        esi 
57                           push        edi 
FF158C404000                 call        d,[0040408C] 
33DB                         xor         ebx,ebx 
A398814000                   mov         [00408198],eax 
53                           push        ebx 
 
Some programs are a bit more clever though, trying to understand the flow of a program. 
For example, it could look at the addresses used and see which ones point to a string, or 
analyze the flow of the program (following jumps). These more advanced disassemblers 
include IDA and WDasm. Using IDA, the most advanced disassembler available at the 
time of writing, the result is: 
 
sub     esp, 20h 
push    ebx 
push    esi 
push    edi 
call    ds:GetProcessHeap 
xor     ebx, ebx 
mov     hHeap, eax 
push    ebx             ; lpModuleName 
 
As you can see, IDA has done some more analysis. Here, it has figured out where the call 
is going, and it understands that the return value from that Windows function 
(GetProcessHeap) is a handle to a heap, so it has appropriately renamed the variable 
to hHeap. In this example there was little IDA could do, but usually it gives quite a lot 
more information than a less specialized program such as HIEW. 
These advanced features save us a lot of work looking into everything manually, and 
gives a good starting point for further analysis of the program. In ASM, we can see what 
the code is doing one little step at a time, but to make this useful we need a bigger 
picture. A higher level of abstraction minimizes explanations of HOW things are 
happening, thus leaving the focus on WHAT is happening. A language like C gives us 
that overview. 



Assembly code to C 
 
Now that we have the ASM code, it is understandable for humans what the program is 
doing. However, since every ASM instruction only performs a trivial task, it is hard to 
see what non-trivial function a program is performing. Let’s see an ASM listing as 
created by HIEW: 
 
.004122F0: 55                           push        ebp 
.004122F1: 8BEC                         mov         ebp,esp 
.004122F3: 83EC48                       sub         esp,048 ;"H" 
.004122F6: 53                           push        ebx 
.004122F7: 56                           push        esi 
.004122F8: 57                           push        edi 
.004122F9: C745F800000000               mov         d,[ebp][-08],000000000 ;" 
.00412300: EB09                         jmps       .00041230B  -----↓ (1) 
.00412302: 8B45F8                       mov         eax,[ebp][-08] 
.00412305: 83C001                       add         eax,001 ;"☺" 
.00412308: 8945F8                       mov         [ebp][-08],eax 
.0041230B: 8B4508                       mov         eax,[ebp][08] 
.0041230E: 50                           push        eax 
.0041230F: FF1584A34300                 call        lstrlenA ;KERNEL32.dll 
.00412315: 3945F8                       cmp         [ebp][-08],eax 
.00412318: 7D2E                         jge        .000412348  -----↓ (2) 
.0041231A: 8B4508                       mov         eax,[ebp][08] 
.0041231D: 0345F8                       add         eax,[ebp][-08] 
.00412320: 8A08                         mov         cl,[eax] 
.00412322: 884DFF                       mov         [ebp][-01],cl 
.00412325: 0FB645FF                     movzx       eax,b,[ebp][-01] 
.00412329: 83F861                       cmp         eax,061 ;"a" 
.0041232C: 7C18                         jl         .000412346  -----↓ (1) 
.0041232E: 0FB645FF                     movzx       eax,b,[ebp][-01] 
.00412332: 83F87A                       cmp         eax,07A ;"z" 
.00412335: 7F0F                         jg         .000412346  -----↓ (2) 
.00412337: 0FB645FF                     movzx       eax,b,[ebp][-01] 
.0041233B: 83E820                       sub         eax,020 ;" " 
.0041233E: 8B4D08                       mov         ecx,[ebp][08] 
.00412341: 034DF8                       add         ecx,[ebp][-08] 
.00412344: 8801                         mov         [ecx],al 
.00412346: EBBA                         jmps       .000412302  -----↑ (3) 
.00412348: 5F                           pop         edi 
.00412349: 5E                           pop         esi 
.0041234A: 5B                           pop         ebx 
.0041234B: 8BE5                         mov         esp,ebp 
.0041234D: 5D                           pop         ebp 
.0041234E: C3                           retn 
 
As you can see, ASM uses a lot of simple instructions to work together and ultimately 
perform a useful task. We’ll start at the first instruction and work down, trying to keep an 
overview of what is going on, using a ‘Pseudo-C’* notation, and eventually translating to 
proper C code. 
 

                                                
* Called ‘Pseudo-C’ because, even though it follows the general structure of C in terms of operators, it is a literal 
translation of the ASM code, and thus still uses registers directly. 



Here are the first few lines: 
 
.004122F0: 55                           push        ebp 
.004122F1: 8BEC                         mov         ebp,esp 
.004122F3: 83EC48                       sub         esp,048 ;"H" 
.004122F6: 53                           push        ebx 
.004122F7: 56                           push        esi 
.004122F8: 57                           push        edi 
 
The first two operations create what is known as a ‘stackframe’. This is essentially a 
‘local’ stack inside the function, where extra room can be reserved for local variables. 
This is done simply by lowering the stack pointer a bit further, for as many bytes as  are 
necessary for the local variables. 
One of the main advantages of a stackframe is that the EBP register can be used as a 
fixed point to reference variables (above EBP are the parameters, and below it are the 
local variables).  
Note that the stackpointers (ESP and EBP) have to be restored before leaving the 
function, to avoid stack corruption. 
 
.004122F0: 55                           push        ebp 
.004122F1: 8BEC                         mov         ebp,esp 
.004122F3: 83EC48                       sub         esp,048 ;"H" 
 
This code creates such a stack frame, and creates 48h bytes of space for local variables. 
 
Windows requires that a few registers (besides ESP and EBP) are preserved during a 
callback function, namely EBX, ESI, and EDI. These are stored safely on the (local) 
stack, ready to be restored right before leaving the function. This allows for free use of 
these registers while inside the function. 
It seems most practical to look at the last few instructions, since we now already know 
several tasks that need to be performed there. And looking, we indeed find exactly what 
we expected: 
 
.00412348: 5F                           pop         edi 
.00412349: 5E                           pop         esi 
.0041234A: 5B                           pop         ebx 
.0041234B: 8BE5                         mov         esp,ebp 
.0041234D: 5D                           pop         ebp 
.0041234E: C3                           retn 
 
First, the 3 registers are restored from our (local) stack. Then the stack is restored to its 
state when the function was called, and the function returns. Note that we could not have 
restored the stack before the 3 registers, because the registers were stored on our local 
stack. Converting all this to C is very easy. We know now that it is probably a function, 
because of it’s stackframe, storing/restoring registers, as well as its retn (return from 
function) at the end: 
 
void SomeFunction() 
{ 

//…code… 
} 



I’ve assumed for now that this is a void function, because there is no change in EAX 
before the return. This does not mean EAX is never changed. But for now, we will assume 
the value in EAX is ignored. 
 
Now we will proceed further into the body of this function: 
 
.004122F9: C745F800000000               mov         d,[ebp][-08],000000000 ;" 
.00412300: EB09                         jmps       .00041230B  -----↓ (1) 
.00412302: 8B45F8                       mov         eax,[ebp][-08] 
.00412305: 83C001                       add         eax,001 ;"☺" 
.00412308: 8945F8                       mov         [ebp][-08],eax 
.0041230B: 8B4508                       mov         eax,[ebp][08] 
.0041230E: 50                           push        eax 
.0041230F: FF1584A34300                 call        lstrlenA ;KERNEL32.dll 
.00412315: 3945F8                       cmp         [ebp][-08],eax 
.00412318: 7D2E                         jge        .000412348  -----↓ (2) 
 
We notice a value being referenced a lot: 
 
d,[ebp][-08] == dword ptr[ebp-08] (in another notation) 
 
Since it is below our EBP it is on our local stack, so the function is storing a local 
variable there. We know that it is DWORD size (because it’s being read using a dword 
ptr), and that it’s probably a signed value (because it’s being compared to the result of 
lstrlenA, which is a signed int). On the win32 platform, the standard signed dword size 
value in C is the (signed) int. Let’s rename it to int_local1 for easier reading (I also 
removed the hexadecimal representation of the code, and the less helpful comments): 
 
.004122F9: mov         int_local1, 000000000 
.00412300: jmps       .00041230B  -----↓ (1) 
.00412302: mov         eax, int_local1 
.00412305: add         eax,001 
.00412308: mov         int_local1, eax 
.0041230B: mov         eax,[ebp][08] 
.0041230E: push        eax 
.0041230F: call        lstrlenA ;KERNEL32.dll 
.00412315: cmp         int_local1,eax 
.00412318: jge        .000412348  -----↓ (2) 
 
Be careful here. Do not confuse [ebp][08] with [ebp][-08]. Even though they 
look alike, they are different addresses. The variable at [ebp][08] is *always* 
(assuming a normal stackframe) the first parameter passed to our function. We will thus 
(for the time being) rename that value to dw_param1. Now that we have identified a 
local variable, and cleaned things up a little, we will make a start at converting to Pseudo-
C: 
 

int_local1 = 0; 
goto label_41230B; 
eax = int_local1; 
eax = eax + 1; 
int_local1 = eax; 

label_41230B: 
 eax = dw_param1; 
 eax = lstrlenA(eax); //lstrlenA returns its result in eax 



if( int_local1 >= eax) 
goto label_412348; 

 
Rather strange looking code, but it’s a start. Let’s be a little bit less literal about it, and 
use our brain. Looking at the 3 lines: 
 

eax = int_local1; 
eax = eax + 1; 
int_local1 = eax; 

 
We see that it is really a very simple instruction, that could be simplified into a mere: 
 
int_local1++; 
 
The only difference between these two representations though, is that EAX no longer has 
the same value after the new representation. We should take care in doing so, because the 
value in EAX might be used afterwards. 
In this case, the next line is: 
 
 eax = dw_param1; 
 
Which means we can freely replace the instruction, since EAX gets overwritten before 
being read anyway. The next part: 
 
 eax = dw_param1; 
 eax = lstrlenA(eax); // lstrlenA returns its result in eax 

if( int_local1 >= eax) 
goto label_412348; 

 
could also be made a lot easier to view, because you can combine a lot of instructions in 
C. We can do it as follows: 
 

if( int_local1 >= lstrlenA(dw_param1) ) 
goto label_412348; 

 
Again, we should now look at if EAX is used afterwards, so that we don’t miss another 
location where this value was being used. On the very next line, however, EAX is 
overwritten, so we are free to make this change. Because we know lstrlenA is expecting a 
pointer to a string, we will rename the parameter now to pString to represent this, 
giving us a total code of: 
 

int_local1 = 0; 
goto label_41230B; 
int_local1++; 

label_41230B: 
if( int_local1 >= lstrlenA(pString)) 

goto label_412348; 
 
Looking for further references to this section, we find the line 
 
.00412346: EBBA                         jmps       .000412302  -----↑ (3) 



 
jumping to the line with int_local1++;, which makes it all appear to be big loop. If 
you’re familiar with C coding, you might already have figured out what structure we are 
looking at here. It seems to have the functionality of a ‘for’-loop. Let’s try to make a for-
loop that mimics this behavior (while also renaming int_local1 to i). Rewriting the 
C code, we end up with: 
 

for(i = 0; i < lstrlenA(pString); i++) 
{ 
 //…rest of code… 
} 

 
It’s slowly beginning to make sense. We now know it is a function that goes through a 
for-loop, ranging from 0 to the length of the string it gets as its (first) parameter. Now we 
need to know what it does inside the loop. 
The code was: 
 
.0041231A: mov         eax, pString 
.0041231D: add         eax,i 
.00412320: mov         cl,[eax] 
.00412322: mov         [ebp][-01],cl 
.00412325: movzx       eax,b,[ebp][-01] 
.00412329: cmp         eax,061 ;"a" 
.0041232C: jl         .000412346  -----↓ (1) 
.0041232E: movzx       eax,b,[ebp][-01] 
.00412332: cmp         eax,07A ;"z" 
.00412335: jg         .000412346  -----↓ (2) 
.00412337: movzx       eax,b,[ebp][-01] 
.0041233B: sub         eax,020 ;" " 
.0041233E: mov         ecx, pString 
.00412341: add         ecx, i 
.00412344: mov         [ecx],al 
 
Here, we find another local variable in use. It appears to be of the unsigned char 
type, because it is byte size (referenced by using a byte ptr), and is used as unsigned (by 
the movzx instructions). In Pseudo-C, we now have: 
 
eax = pString; 
eax = eax + i; 
cl = *(eax); 
ch_local2 = cl; 
 
eax = (DWORD) ch_local2; 
if(eax < 0x61) // “a” 

goto label_412346; 
 

eax = (DWORD) ch_local2; 
if(eax > 0x7A) // “z” 
 goto label_412346; 
 
eax = (DWORD) ch_local2; 
eax = eax – 0x20; 
ecx = pString; 
ecx = ecx + i; 
*(ecx) = al; 
 



Let’s make this code a bit more clever, and thus shorter, renaming the character to c for 
shortness, as well as assuming its using the char as a character and not as a byte sized 
number: 
 
c = pString[i]; 
 
if((c < ‘a’) || (c > ‘z’)) 
 goto label_412346; 
 
pString[i] = c-0x20; 
 
We notice that the address 412346h is simply the end of the loop, so we can either 
replace the ‘goto label_412346’ with a ‘continue;’, or we can invert the 
conditional jumps. I chose the latter, because it seemed like a more natural way to 
describe the condition, as you will see later. Inverting the condition might require some 
explanation: 
When the program goes to the end of the loop if (c<‘a’)||(c>‘z’), then it 
DOESN’T go to the end of the loop, if (c>=’a’)&&(c<=’z’), which allows an if 
construction as follows: 
 
c = pString[i]; 
 
if((c >= ‘a’) && (c <= ‘z’)) 

pString[i] = ch_local2-0x20; 
 
//…end of loop 
 
This makes it look MUCH clearer. We can now begin to understand what this code is 
doing. Let’s put all of the code we have together. 
 
void SomeFunction(char* pString) 
{ 
 int i;    //Local variables have to be declared 
 unsigned char c;   //at the start of the function. 
 

for(i = 0; i < lstrlenA(pString); i++) 
{ 

c = pString[i]; 
 
if((c >= ‘a’) && (c <= ‘z’)) 

pString[i] = c-0x20; 
} 

} 
 
A great deal shorter than the ASM code we started from. Now that we’ve converted all 
this back to C, we should be able to figure out the task it performs. 
It takes every character in the string it gets, and if that character is between ‘a’ and ‘z’ 
(so, if it is a lowercase alphabetic character), it subtracts 20h.This is exactly the 
difference between the uppercase and lowercase characters. So what this function does is 
‘convert a string to uppercase’, and should be renamed as ToUppercase. 
In this manner all code can slowly be converted, though some structures are harder to 
identify than others. 



Conclusion 
 
A normal engineering process goes from the source code (C) to a binary format (.exe), 
while what I have described in this document goes entirely the other way. That is the 
reason this process is called Reverse Engineering. We have seen this is not impossible to 
do. With tools however, the task can be simplified a lot. The main tool one would use for 
this kind of thing is IDA. It is both flexible and powerful, and even for the translation 
back to (pseudo) C code there are plugins under development*. To create proper C code 
from an ASM or Pseudo-C listing is a task not to be underestimated. It is quite hard to 
recognize high level structures at first. A good exercise is to write your own program in 
MSVC++, and debug it with the disassembly view on. This gives your C code along with 
the ASM code it represents, which will give you a good understanding of how the two 
relate to one another. 
 
As with most things, practice makes perfect. 
 
Kwazy Webbit 
 
Webbithole: http://its.mine.nu/ 
RETeam: http://www.reteam.org/ 
 
 
Special thanks go to DEATH, for proofreading this essay and being a perfectionist :-)

                                                
* IDA (http://www.datarescue.com/) combined with Lantern (http://www.xopesystems.com/lantern/) forms a tool that 
automates almost the entire process I described in this document. The only thing it doesn’t do is create actual C code, 
since that requires a lot of understanding and recognition of structures. It does create the Pseudo-C code I have used 
throughout the ‘Assembly Code to C’ chapter. See their site for details. 

http://its.mine.nu/
http://www.reteam.org/
http://www.datarescue.com/
http://www.xopesystems.com/lantern/


Appendix A1 
 
Key to decoding single-byte instructions (#group references Appendix A2) 

IA-32 architecture 
one byte opcodes

 

xxh 
  

x0h 
  

x1h x2h x3h x4h x5h x6h x7h 

  
0xh 
  

ADD 
Eb,Gb 

ADD 
Ev,Gv 

ADD 
Gb,Eb 

ADD 
Gv,Ev 

ADD 
AL,Ib 

ADD 
rAX,Iz 

PUSH 
ES 

POP 
ES 

  
1xh 
  

ADC 
Eb,Gb 

ADC 
Ev,Gv 

ADC 
Gb,Eb 

ADC 
Gv,Ev 

ADC 
AL,Ib 

ADC 
rAX,Iz 

PUSH 
SS 

POP 
SS 

  
2xh 
  

AND 
Eb,Gb 

AND 
Ev,Gv 

AND 
Gb,Eb 

AND 
Gv,Ev 

AND 
AL,Ib 

AND 
rAx,Iz ES: DAA 

  
3xh 
  

XOR 
Eb,Gb 

XOR 
Ev,Gv 

XOR 
Gb,Eb 

XOR 
Gv,Ev 

XOR 
AL,Ib 

XOR 
rAX,Iz SS: AAA 

  
4xh 
  

INC 
eAX 

INC 
eCX 

INC 
eDX 

INC 
eBX 

INC 
eSP 

INC 
eBP 

INC 
eSI 

INC 
eDI 

  
5xh 
  

PUSH 
rAX 

PUSH 
rCX 

PUSH 
rDX 

PUSH 
rBX 

PUSH 
rSP 

PUSH 
rBP 

PUSH 
rSI 

PUSH 
rDI 

  
6xh 
  

PUSHA 
PUSHAD 
(80186+) 

POPA 
POPAD 

(80186+) 

BOUND 
Gv,Ma 

(80186+) 

ARPL 
Ew,Gw 

(80286+) 
FS: 

(80386+) 
GS: 

(80386+) 
OPSIZE: 
(80386+) 

ADSIZE: 
(80386+) 

  
7xh 
  

JO 
Jb 

JNO 
Jb 

JB 
Jb 

JNB 
Jb 

JZ 
Jb 

JNZ 
Jb 

JBE 
Jb 

JNBE 
Jb 

  
8xh 
  

group #1 
Eb,Ib 

group #1 
Ev,Iz 

group #1* 
Eb,Ib 

group #1 
Ev,Ib 

TEST 
Eb,Gb 

TEST 
Ev,Gv 

XCHG 
Eb,Gb 

XCHG 
Ev,Gv 

  
9xh 
  

NOP 
  

PAUSE (F3h) 
(see CPUID) 

XCHG 
rCX,rAX 

XCHG 
rDX,rAX 

XCHG 
rBX,rAX 

XCHG 
rSP,rAX 

XCHG 
rBP,rAX 

XCHG 
rSI,rAX 

XCHG 
rDI,rAX 

  
Axh 
  

MOV 
AL,Ob 

MOV 
rAX,Ov 

MOV 
Ob,AL 

MOV 
Ov,rAX 

MOVS 
Yb,Xb 

MOVS 
Yv,Xv 

CMPS 
Yb,Xb 

CMPS 
Yv,Xv 

  
Bxh 
  

MOV 
AL,Ib 

MOV 
CL,Ib 

MOV 
DL,Ib 

MOV 
BL,Ib 

MOV 
AH,Ib 

MOV 
CH,Ib 

MOV 
DH,Ib 

MOV 
BH,Ib 

  
Cxh 
  

group #2 
Eb,Ib 

(80186+) 

group #2 
Ev,Ib 

(80186+) 
RET near 

Iw RET near LES 
Gz,Mp 

LDS 
Gz,Mp 

group #12 
Eb,Ib 

group #12 
Ev,Iz 

  
Dxh 
  

group #2 
Eb,1 

group #2 
Ev,1 

group #2 
Eb,CL 

group #2 
Ev,CL 

AAM 
Ib 

AAD 
Ib 

SALC 
SETALC XLAT 

  
Exh 
  

LOOPNE 
LOOPNZ 

Jb 

LOOPE 
LOOPZ 
Jb 

LOOP 
Jb 

JCXZ 
JECX 
Jb 

IN 
AL,Ib 

IN 
eAX,Ib 

OUT 
Ib,AL 

OUT 
Ib,eAX 

  
Fxh 
  

LOCK: 
INT1 

(ICEBP) 
(80386+) 

REPNE: REP: 
REPE: HLT CMC group #3 

Eb 
group #3 

Ev 

 
 



xxh 
  

x8h 
  

x9h xAh xBh xCh xDh xEh xFh 

  
0xh 
  

OR 
Eb,Gb 

OR 
Ev,Gv 

OR 
Gb,Eb 

OR 
Gv,Ev 

OR 
AL,Ib 

OR 
rAX,Iz 

PUSH 
CS 

two byte 
opcodes 
(80286+) 

  
1xh 
  

SBB 
Eb,Gb 

SBB 
Ev,Gv 

SBB 
Gb,Eb 

SBB 
Gv,Ev 

SBB 
AL,Ib 

SBB 
rAX,Iz 

PUSH 
DS 

POP 
DS 

  
2xh 
  

SUB 
Eb,Gb 

SUB 
Ev,Gv 

SUB 
Gb,Eb 

SUB 
Gv,Ev 

SUB 
AL,Ib 

SUB 
rAX,Iz 

CS: 
  

Hint Not 
Taken 

for Jcc (P4+) 

DAS 

  
3xh 
  

CMP 
Eb,Gb 

CMP 
Ev,Gv 

CMP 
Gb,Eb 

CMP 
Gv,Ev 

CMP 
AL,Ib 

CMP 
rAX,Iz 

DS: 
  

Hint Taken 
for Jcc (P4+) 

AAS 

  
4xh 
  

DEC 
eAX 

DEC 
eCX 

DEC 
eDX 

DEC 
eBX 

DEC 
eSP 

DEC 
eBP 

DEC 
eSI 

DEC 
eDI 

  
5xh 
  

POP 
rAX 

POP 
rCX 

POP 
rDX 

POP 
rBX 

POP 
rSP 

POP 
rBP 

POP 
rSI 

POP 
rDI 

  
6xh 
  

PUSH 
Iz 

(80186+) 

IMUL 
Gv,Ev,Iz 
(80186+) 

PUSH 
Ib 

(80186+) 

IMUL 
Gv,Ev,Ib 
(80186+) 

INS 
Yb,DX 

(80186+) 

INS 
Yz,DX 

(80186+) 

OUTS 
DX,Xb 

(80186+) 

OUTS 
DX,Xz 

(80186+) 
  

7xh 
  

JS 
Jb 

JNS 
Jb 

JP 
Jb 

JNP 
Jb 

JL 
Jb 

JNL 
Jb 

JLE 
Jb 

JNLE 
Jb 

  
8xh 
  

MOV 
Eb,Gb 

MOV 
Ev,Gv 

MOV 
Gb,Eb 

MOV 
Gv,Ev 

MOV Mw,Sw 
MOV Rv,Sw 

LEA 
Gv,M 

MOV Sw,Mw 
MOV Sw,Rv group #10 

  
9xh 
  

CBW 
(8088) 
CBW/CWDE 
(80386+) 

CWD 
(8088) 
CWD/CDQ 
(80386+) 

CALL 
Ap 

WAIT 
FWAIT 

PUSHF 
Fv 

POPF 
Fv SAHF LAHF 

  
Axh 
  

TEST 
AL,Ib 

TEST 
rAX,Iz 

STOS 
Yb,AL 

STOS 
Yv,rAX 

LODS 
AL,Xb 

LODS 
rAX,Xv 

SCAS 
Yb,AL 

SCAS 
Yv,rAX 

  
Bxh 
  

MOV 
rAX,Iv 

MOV 
rCX,Iv 

MOV 
rDX,Iv 

MOV 
rBX,Iv 

MOV 
rSP,Iv 

MOV 
rBP,Iv 

MOV 
rSI,Iv 

MOV 
rDI,Iv 

  
Cxh 
  

ENTER 
Iw,Ib 

(80186+) 
LEAVE 

(80186+) 
RET far 

Iw RET far INT3 INT 
Ib INTO IRET 

  
Dxh 
  

ESC 
0 

ESC 
1 

ESC 
2 

ESC 
3 

ESC 
4 

ESC 
5 

ESC 
6 

ESC 
7 

  
Exh 
  

CALL 
Jz 

JMP 
Jz 

JMP 
Ap 

JMP 
Jb 

IN 
AL,DX 

IN 
eAX,DX 

OUT 
DX,AL 

OUT 
DX,eAX 

  
Fxh 
  

CLC STC CLI STI CLD STD group #4 
INC/DEC 

group #5 
INC/DEC etc. 

note: The opcodes marked with * are aliases to other opcodes.
 

 
 



Appendix A2 

IA-32 architecture 
opcode groups 

 
 

  
mod R/M 

  
xx000xxx xx001xxx xx010xxx xx011xxx xx100xxx xx101xxx xx110xxx xx111xxx 

         

group #1 
(80..83h) 

  
ADD 
  

OR ADC SBB AND SUB XOR CMP 

group #2 
(C0..C1h) 
(D0..D3h) 

ROL ROR RCL RCR SHL SHR SAL* SAR 

group #3 
(F6..F7h) 

TEST 
Ib/Iz 

TEST* 
Ib/Iz 

  
NOT 
  

NEG MUL 
AL/rAX 

IMUL 
AL/rAX 

DIV 
AL/rAX 

IDIV 
AL/rAX 

group #4 
(FEh) 

  
INC Eb 

  
DEC Eb       

group #5 
(FFh) 

  
INC Ev 

  
DEC Ev CALL Ev CALL Mp JMP Ev JMP Mp PUSH Ev  

group #6 
(0Fh,00h) 

SLDT Mw 
SLDT Gv 

STR Mw 
STR Gv 

LLDT Mw 
LLDT Gv 

LTR Mw 
LTR Gv 

VERR Mw 
VERR Gv 

VERW Mw 
VERW Gv 

JMPE 
Ev 

(IA-64) 
 

group #7 
(0Fh,01h) SGDT Ms 

SIDT Ms 
MONITOR 
(C8h) 
MWAIT 
(C9h) 
(see 
CPUID) 

LGDT Ms LIDT Ms SMSW Mw 
SMSW Gv  LMSW Mw 

LMSW Gv 
INVLPG M 
(80486+) 

group #8 
(0Fh,BAh)     

  
BT 
  

BTS BTR BTC 

group #9 
(0Fh,C7h)  

CMPXCHG 
Mq 

(see 
CPUID) 

      

group #10 
(8Fh) 

  
POP Ev 

  
       

group #11 
(0Fh,B9h) 

  
UD2 
  

UD2 UD2 UD2 UD2 UD2 UD2 UD2 

group #12 
(C6h) 
(C7h) 

MOV        

group #13 
(0Fh,71h)   

PSRLW 
PRq,Ib 
(MMX) 
(66h) 
PSRLW 
VRo,Ib 
(SSE2) 

 

PSRAW 
PRq,Ib 
(MMX) 
(66h) 
PSRAW 
VRo,Ib 
(SSE2) 

 

PSLLW 
PRq,Ib 
(MMX) 
(66h) 
PSLLW 
VRo,Ib 
(SSE2) 

 

group #14 
(0Fh,72h)   

PSRLD 
PRq,Ib 
(MMX) 
(66h) 
PSRLD 

 

PSRAD 
PRq,Ib 
(MMX) 
(66h) 
PSRAD 

 

PSLLD 
PRq,Ib 
(MMX) 
(66h) 
PSLLD 

 



VRo,Ib 
(SSE2) 

VRo,Ib 
(SSE2) 

VRo,Ib 
(SSE2) 

group #15 
(0Fh,73h)   

PSRLQ 
PRq,Ib 
(MMX) 
(66h) 
PSRLQ 
VRo,Ib 
(SSE2) 

  
  

(66h) 
PSRLDQ 
VRo,Ib 
(SSE2) 

  

PSLLQ 
PRq,Ib 
(MMX) 
(66h) 
PSLLQ 
VRo,Ib 
(SSE2) 

  
  

(66h) 
PSLLDQ 
VRo,Ib 
(SSE2) 

group #16 
(0Fh,AEh) 

FXSAVE 
M512 
(see 
CPUID) 

FXRSTOR 
M512 
(see 
CPUID) 

LDMXCSR 
Md 

(SSE) 

STMXCSR 
Md 

(SSE) 
 LFENCE 

(SSE2-MEM) 
MFENCE 

(SSE2-MEM) 

CLFLUSH M 
(see 
CPUID) 
SFENCE 

(SSE-MEM) 

group #17 
(0Fh,18h) 

PREFETCH- 
NTA M 

(SSE-MEM) 

PREFETCH- 
T0 M 

(SSE-MEM) 

PREFETCH- 
T1 M 

(SSE-MEM) 

PREFETCH- 
T2 M 

(SSE-MEM) 

HINT_NOP 
M 

(P6+) 

HINT_NOP 
M 

(P6+) 

HINT_NOP 
M 

(P6+) 

HINT_NOP 
M 

(P6+) 
 

 
 

note: The opcodes marked with * are aliases to other opcodes.
 

 



Appendix A3 
 

IA-32 architecture 
32bit mod R/M byte

 

r8(/r) 
r16(/r) 
r32(/r) 
mm(/r) 
xmm(/r) 
sreg 
eee 
eee 
/digit (opcode) 
reg= 

AL 
AX 
EAX 
MM0 
XMM0 
ES 
CR0 
DR0 
0 
000 

CL 
CX 
ECX 
MM1 
XMM1 
CS 
CR1 
DR1 
1 
001 

DL 
DX 
EDX 
MM2 
XMM2 
SS 
CR2 
DR2 
2 
010 

BL 
BX 
EBX 
MM3 
XMM3 
DS 
CR3 
DR3 
3 
011 

AH 
SP 
ESP 
MM4 
XMM4 
FS 
CR4 
DR4 
4 
100 

CH 
BP 
EBP 
MM5 
XMM5 
GS 
CR5 
DR5 
5 
101 

DH 
SI 
ESI 
MM6 
XMM6 
res. 
CR6 
DR6 
6 
110 

BH 
DI 
EDI 
MM7 
XMM7 
res. 
CR7 
DR7 
7 
111 

           
effective address mod R/M value of mod R/M byte (hex) 

           
[EAX] 
[ECX] 
[EDX] 
[EBX] 
[sib] 
[sdword] 
[ESI] 
[EDI] 

00 
  
  
  
  
  
  
  

000 
001 
010 
011 
100 
101 
110 
111 

00 
01 
02 
03 
04 
05 
06 
07 

08 
09 
0A 
0B 
0C 
0D 
0E 
0F 

10 
11 
12 
13 
14 
15 
16 
17 

18 
19 
1A 
1B 
1C 
1D 
1E 
1F 

20 
21 
22 
23 
24 
25 
26 
27 

28 
29 
2A 
2B 
2C 
2D 
2E 
2F 

30 
31 
32 
33 
34 
35 
36 
37 

38 
39 
3A 
3B 
3C 
3D 
3E 
3F 

[EAX+sbyte] 
[ECX+sbyte] 
[EDX+sbyte] 
[EBX+sbyte] 
[sib+sbyte] 
[EBP+sbyte] 
[ESI+sbyte] 
[EDI+sbyte] 

01 
  
  
  
  
  
  
  

000 
001 
010 
011 
100 
101 
110 
111 

40 
41 
42 
43 
44 
45 
46 
47 

48 
49 
4A 
4B 
4C 
4D 
4E 
4F 

50 
51 
52 
53 
54 
55 
56 
57 

58 
59 
5A 
5B 
5C 
5D 
5E 
5F 

60 
61 
62 
63 
64 
65 
66 
67 

68 
69 
6A 
6B 
6C 
6D 
6E 
6F 

70 
71 
72 
73 
74 
75 
76 
77 

78 
79 
7A 
7B 
7C 
7D 
7E 
7F 

[EAX+sdword] 
[ECX+sdword] 
[EDX+sdword] 
[EBX+sdword] 
[sib+sdword] 
[EBP+sdword] 
[ESI+sdword] 
[EDI+sdword] 

10 
  
  
  
  
  
  
  

000 
001 
010 
011 
100 
101 
110 
111 

80 
81 
82 
83 
84 
85 
86 
87 

88 
89 
8A 
8B 
8C 
8D 
8E 
8F 

90 
91 
92 
93 
94 
95 
96 
97 

98 
99 
9A 
9B 
9C 
9D 
9E 
9F 

A0 
A1 
A2 
A3 
A4 
A5 
A6 
A7 

A8 
A9 
AA 
AB 
AC 
AD 
AE 
AF 

B0 
B1 
B2 
B3 
B4 
B5 
B6 
B7 

B8 
B9 
BA 
BB 
BC 
BD 
BE 
BF 

AL/AX/EAX/MM0/XMM0 
CL/CX/ECX/MM1/XMM1 
DL/DX/EDX/MM2/XMM2 
BL/BX/EBX/MM3/XMM3 
AH/SP/ESP/MM4/XMM4 
CH/BP/EBP/MM5/XMM5 
DH/SI/ESI/MM6/XMM6 
BH/DI/EDI/MM7/XMM7 

11 
  
  
  
  
  
  
  

000 
001 
010 
011 
100 
101 
110 
111 

C0 
C1 
C2 
C3 
C4 
C5 
C6 
C7 

C8 
C9 
CA 
CB 
CC 
CD 
CE 
CF 

D0 
D1 
D2 
D3 
D4 
D5 
D6 
D7 

D8 
D9 
DA 
DB 
DC 
DD 
DE 
DF 

E0 
E1 
E2 
E3 
E4 
E5 
E6 
E7 

E8 
E9 
EA 
EB 
EC 
ED 
EE 
EF 

F0 
F1 
F2 
F3 
F4 
F5 
F6 
F7 

F8 
F9 
FA 
FB 
FC 
FD 
FE 
FF 
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