

Understanding Code
by Kwazy Webbit

Introduction

There is no single layer of abstraction to executable code. It has many, the lowest of
which is binary.
It is important to understand that binary can represent anything. Executable code and data
are, at the lowest level, the exact same thing: a collection of 1’s and 0’s. You can try to
run data as code, but most likely that will just cause a crash. Trying to use executable
code as, for example, picture data will also be either invalid or, at best, just random. This
is because there is a structure to both of them which allows them to become more than
just binary. To be useful, you need something that understands this structure and will
interpret it in the proper way.
As a more concrete (non-binary) example, one could have four numbers:

112,43,149,184

They could mean pretty much anything. If I were to tell you it was a line for example,
one could imagine it being a line in 2 dimensions, starting at coordinates (112,43),
and ending in (149,184). However, if I were to tell you it was a square, you could
think of it as a square with those coordinates as top-left and bottom-right points.
It can be anything, it all depends on your interpretation. The problem is, how do we make
sense of it all? How does the computer know what to do with what? How can WE know
what it really does? In this essay, I will not go into understanding data, since data
structures are too diverse (think alone of the image formats you’ve seen). Each file
format has a different structure. Programs use the file extension as a hint for the structure
to expect.
Instead, I will focus on executable code, specifically that for the x86 processor. I will
start at binary, and eventually end up in C*.

* I chose the C programming language because it is very close to regular mathematical notation, and simple expressions
are fairly easy to read even for non-programmers. If you do have trouble understanding C, there is a plethora of
information to be found on the web

Binary to Hexadecimal

As mentioned before, the lowest level of information (in a computing environment) is
binary. Code, as the computer sees it, is an endless row of 1’s and 0’s. It is nearly
impossible for humans to follow what is happening by seeing it. If you are interested in
how the circuits in your CPU work, I suggest getting some electronics books. I do not
know enough about it to explain in detail how it works (though I have seen it work on
much simpler processors). For purposes of explanation, binary is a clumsy format, as the
amount of binary digits is too large for us to easily oversee. That is why we never
normally edit anything in binary, but instead go to a direct translation, known as
hexadecimal format. It is just a numbering format. Just as a numerical representation of
binary has two digits: 0 and 1, and decimal has 10 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), hexadecimal
has 16: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. You may wonder why this format is
chosen over the decimal system which we are all used to working with, and is thus much
more intuitive for us humans. The answer is simple. It is because underneath it all the
numbers are still binary, being translated. Using 4 bits at a time you can make exactly 16
different values, from 0 to 15. In hexadecimal, that is from 0 to F. This makes it a very
practical system to write down 4 bits with one character. I’ve included a quick lookup
table, if you aren’t familiar with it already.

Binary Decimal Hexadecimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

10000 16 10

As you can see, at binary 10000, the hexadecimal value (10) still makes sense, since the
first digit (1) can still represent 0001, while the second digit (0) represents the 0000,
resulting in 00010000, which matches the binary. The decimal however is now 16,
which is not as obvious to convert anymore.

Hexadecimal to Assembly Code

Using hexadecimal notation we have a shorthand for writing down binary code, giving us
more overview. It still makes no sense to a human though, because essentially it is still
just a lot of numbers. Following is a sample of code in hexadecimal format:

83EC20535657FF158C40400033DBA39881400053

As said, this is just a shorthand for the binary digits it represents. That means it doesn’t
give any explanation to what it does, but it is a lot shorter than the binary representation:
The hexadecimal representation is 40 characters, while the binary would be 160 (Since
every hexadecimal digit represents 4 bits)

The code above is not one big instruction*. It is, in reality, several small ones. On some
processors, every instruction has a certain size (e.g. 2 bytes) so you can easily chop code
up into parts of that size to get the different instructions (assuming you have a valid
starting position). The x86 processor is a little more complex (it is a CISC† architecture
after all), and has different sized instructions. You might now wonder how we can ever
split up different instructions this way. The idea is, you take the first byte, look at its
value, and that byte will tell you how to proceed. Several things could happen:

- It could be a single byte instruction: e.g. 90h‡ is the ‘NOP’ instruction (No
OPeration) and is only 1 byte in size.

- The instruction is not yet complete: e.g. Instructions starting with 0Fh need more
bytes to fully define their function.

- The instruction is defined by a single byte, but it needs parameters: e.g. 8Bh
moves one register into another. The byte following 8Bh will describe where it
moves from, and where it moves to.

- The instruction is not yet complete and it needs parameters.

Because we will need to know what an instruction is in order to split them up anyway, we
will combine the process of splitting up the different instructions with translating them to
a human-readable equivalent. This ‘human-readable equivalent’ is known as ‘assembly
language’, often abbreviated to ASM. The process of translating a program from raw
code to ASM, is known as ‘disassembling’ (lit. ‘taking apart’). It takes some skill to read
ASM. However, since every instruction in ASM performs a fairly trivial task (even on a

* The term ‘instruction’ here refers to the actual code bytes, while the term ‘operation’ refers to the task that instruction
performs.
† Complex Instruction Set Computer, that means it has a lot of different instructions which do a lot of different detailed
things. Its counterpart is the RISC (Reduced Instruction Set Computer) where only a few instructions exist, doing
simple tasks. This allows lower complexity, and single instructions are generally executed faster. However, since less is
done in a single instruction, it has been long debated which solution is better.
‡ Hexadecimal values are generally indicated by appending a ‘h’. In C notation, they are represented by preceding the
value with ‘0x’, for example ‘0x90’ means 90h.

CISC processor), they are easy to understand by themselves. It takes some experience
however, to keep an overview of what non-trivial action is being done, more on this later.
First, we are going to look at the separate instructions.

Since there is no clear system to see what operation a hexadecimal code performs (it is
basically a matter of looking it up in a reference, and writing it down), it is a rather
tedious job. However, as it is important to understand how this works, I will demonstrate
using the example above.
Let’s take another look at the hexadecimal code:

83EC20535657FF158C40400033DBA39881400053

We will assume the first byte is a valid starting point (and not halfway through an
instruction, because this would ruin our disassembly process*) and go from there.
We take the first byte, which is 83h, and we’ll take a manual to look it up. I used the
table in Appendix A1† to look it up. This says it requires another byte to describe the full
operation, and that this byte should be in the form of a ‘mod R/M’ byte. To see what the
full operation is to use the information from this byte and look under “group #1” in
Appendix A2. In this case, the byte is ECh. A mod R/M byte consist of 3 bitfields:

Bit : 7 6 5 4 3 2 1 0
Meaning : mod reg R/M

To separate these bitfields, we have to go back to binary, which gives:

EC = 1110 1100 = 11 101 100

Using Appendix A2 we see that for the bitfields matching xx101xxx, the operation is
SUB. The other two bitfields describe the first operand of the SUB operation. Looking at
Appendix B, we find that 11 means that it uses a register directly, and 100 means that
that register is ESP. Using the original description of Appendix A1, we have one more
operand to fill, the ‘Ib’ (Input byte). Quite simply, the next byte is to be used, which is
the 3rd byte (20h).
Putting all this together, we find the first ASM instruction:

83EC20 SUB ESP, 20

Which lets us continue to decode the next instruction (starting with 53h).
Let’s do one more. Looking up 53h (in Appendix A1) shows it is a single byte
instruction with no parameters:

PUSH rBX (= PUSH EBX)

* Some programs purposely use this ‘starting point’-problem to confuse disassemblers, to prevent outsiders looking at
how their program works. This technique is known as ‘obfuscation’.
† The tables in Appendix A are taken from http://www.sandpile.org

http://www.sandpile.org

So now we have translated the first 4 bytes into their ASM equivalents:

83EC20 SUB ESP, 20
53 PUSH EBX

As you probably realized by now, disassembling takes quite long to do manually.
Luckily, there are plenty of ready made tools (aptly called ‘disassemblers’) to perform
this process for us (e.g. HIEW).
Using HIEW, the hexadecimal example is translated to ASM as follows:

83EC20 sub esp,020
53 push ebx
56 push esi
57 push edi
FF158C404000 call d,[0040408C]
33DB xor ebx,ebx
A398814000 mov [00408198],eax
53 push ebx

Some programs are a bit more clever though, trying to understand the flow of a program.
For example, it could look at the addresses used and see which ones point to a string, or
analyze the flow of the program (following jumps). These more advanced disassemblers
include IDA and WDasm. Using IDA, the most advanced disassembler available at the
time of writing, the result is:

sub esp, 20h
push ebx
push esi
push edi
call ds:GetProcessHeap
xor ebx, ebx
mov hHeap, eax
push ebx ; lpModuleName

As you can see, IDA has done some more analysis. Here, it has figured out where the call
is going, and it understands that the return value from that Windows function
(GetProcessHeap) is a handle to a heap, so it has appropriately renamed the variable
to hHeap. In this example there was little IDA could do, but usually it gives quite a lot
more information than a less specialized program such as HIEW.
These advanced features save us a lot of work looking into everything manually, and
gives a good starting point for further analysis of the program. In ASM, we can see what
the code is doing one little step at a time, but to make this useful we need a bigger
picture. A higher level of abstraction minimizes explanations of HOW things are
happening, thus leaving the focus on WHAT is happening. A language like C gives us
that overview.

Assembly code to C

Now that we have the ASM code, it is understandable for humans what the program is
doing. However, since every ASM instruction only performs a trivial task, it is hard to
see what non-trivial function a program is performing. Let’s see an ASM listing as
created by HIEW:

.004122F0: 55 push ebp
.004122F1: 8BEC mov ebp,esp
.004122F3: 83EC48 sub esp,048 ;"H"
.004122F6: 53 push ebx
.004122F7: 56 push esi
.004122F8: 57 push edi
.004122F9: C745F800000000 mov d,[ebp][-08],000000000 ;"
.00412300: EB09 jmps .00041230B -----↓ (1)
.00412302: 8B45F8 mov eax,[ebp][-08]
.00412305: 83C001 add eax,001 ;"☺"
.00412308: 8945F8 mov [ebp][-08],eax
.0041230B: 8B4508 mov eax,[ebp][08]
.0041230E: 50 push eax
.0041230F: FF1584A34300 call lstrlenA ;KERNEL32.dll
.00412315: 3945F8 cmp [ebp][-08],eax
.00412318: 7D2E jge .000412348 -----↓ (2)
.0041231A: 8B4508 mov eax,[ebp][08]
.0041231D: 0345F8 add eax,[ebp][-08]
.00412320: 8A08 mov cl,[eax]
.00412322: 884DFF mov [ebp][-01],cl
.00412325: 0FB645FF movzx eax,b,[ebp][-01]
.00412329: 83F861 cmp eax,061 ;"a"
.0041232C: 7C18 jl .000412346 -----↓ (1)
.0041232E: 0FB645FF movzx eax,b,[ebp][-01]
.00412332: 83F87A cmp eax,07A ;"z"
.00412335: 7F0F jg .000412346 -----↓ (2)
.00412337: 0FB645FF movzx eax,b,[ebp][-01]
.0041233B: 83E820 sub eax,020 ;" "
.0041233E: 8B4D08 mov ecx,[ebp][08]
.00412341: 034DF8 add ecx,[ebp][-08]
.00412344: 8801 mov [ecx],al
.00412346: EBBA jmps .000412302 -----↑ (3)
.00412348: 5F pop edi
.00412349: 5E pop esi
.0041234A: 5B pop ebx
.0041234B: 8BE5 mov esp,ebp
.0041234D: 5D pop ebp
.0041234E: C3 retn

As you can see, ASM uses a lot of simple instructions to work together and ultimately
perform a useful task. We’ll start at the first instruction and work down, trying to keep an
overview of what is going on, using a ‘Pseudo-C’* notation, and eventually translating to
proper C code.

* Called ‘Pseudo-C’ because, even though it follows the general structure of C in terms of operators, it is a literal
translation of the ASM code, and thus still uses registers directly.

Here are the first few lines:

.004122F0: 55 push ebp
.004122F1: 8BEC mov ebp,esp
.004122F3: 83EC48 sub esp,048 ;"H"
.004122F6: 53 push ebx
.004122F7: 56 push esi
.004122F8: 57 push edi

The first two operations create what is known as a ‘stackframe’. This is essentially a
‘local’ stack inside the function, where extra room can be reserved for local variables.
This is done simply by lowering the stack pointer a bit further, for as many bytes as are
necessary for the local variables.
One of the main advantages of a stackframe is that the EBP register can be used as a
fixed point to reference variables (above EBP are the parameters, and below it are the
local variables).
Note that the stackpointers (ESP and EBP) have to be restored before leaving the
function, to avoid stack corruption.

.004122F0: 55 push ebp
.004122F1: 8BEC mov ebp,esp
.004122F3: 83EC48 sub esp,048 ;"H"

This code creates such a stack frame, and creates 48h bytes of space for local variables.

Windows requires that a few registers (besides ESP and EBP) are preserved during a
callback function, namely EBX, ESI, and EDI. These are stored safely on the (local)
stack, ready to be restored right before leaving the function. This allows for free use of
these registers while inside the function.
It seems most practical to look at the last few instructions, since we now already know
several tasks that need to be performed there. And looking, we indeed find exactly what
we expected:

.00412348: 5F pop edi
.00412349: 5E pop esi
.0041234A: 5B pop ebx
.0041234B: 8BE5 mov esp,ebp
.0041234D: 5D pop ebp
.0041234E: C3 retn

First, the 3 registers are restored from our (local) stack. Then the stack is restored to its
state when the function was called, and the function returns. Note that we could not have
restored the stack before the 3 registers, because the registers were stored on our local
stack. Converting all this to C is very easy. We know now that it is probably a function,
because of it’s stackframe, storing/restoring registers, as well as its retn (return from
function) at the end:

void SomeFunction()
{

//…code…
}

I’ve assumed for now that this is a void function, because there is no change in EAX
before the return. This does not mean EAX is never changed. But for now, we will assume
the value in EAX is ignored.

Now we will proceed further into the body of this function:

.004122F9: C745F800000000 mov d,[ebp][-08],000000000 ;"
.00412300: EB09 jmps .00041230B -----↓ (1)
.00412302: 8B45F8 mov eax,[ebp][-08]
.00412305: 83C001 add eax,001 ;"☺"
.00412308: 8945F8 mov [ebp][-08],eax
.0041230B: 8B4508 mov eax,[ebp][08]
.0041230E: 50 push eax
.0041230F: FF1584A34300 call lstrlenA ;KERNEL32.dll
.00412315: 3945F8 cmp [ebp][-08],eax
.00412318: 7D2E jge .000412348 -----↓ (2)

We notice a value being referenced a lot:

d,[ebp][-08] == dword ptr[ebp-08] (in another notation)

Since it is below our EBP it is on our local stack, so the function is storing a local
variable there. We know that it is DWORD size (because it’s being read using a dword
ptr), and that it’s probably a signed value (because it’s being compared to the result of
lstrlenA, which is a signed int). On the win32 platform, the standard signed dword size
value in C is the (signed) int. Let’s rename it to int_local1 for easier reading (I also
removed the hexadecimal representation of the code, and the less helpful comments):

.004122F9: mov int_local1, 000000000
.00412300: jmps .00041230B -----↓ (1)
.00412302: mov eax, int_local1
.00412305: add eax,001
.00412308: mov int_local1, eax
.0041230B: mov eax,[ebp][08]
.0041230E: push eax
.0041230F: call lstrlenA ;KERNEL32.dll
.00412315: cmp int_local1,eax
.00412318: jge .000412348 -----↓ (2)

Be careful here. Do not confuse [ebp][08] with [ebp][-08]. Even though they
look alike, they are different addresses. The variable at [ebp][08] is *always*
(assuming a normal stackframe) the first parameter passed to our function. We will thus
(for the time being) rename that value to dw_param1. Now that we have identified a
local variable, and cleaned things up a little, we will make a start at converting to Pseudo-
C:

int_local1 = 0;
goto label_41230B;
eax = int_local1;
eax = eax + 1;
int_local1 = eax;

label_41230B:
 eax = dw_param1;
 eax = lstrlenA(eax); //lstrlenA returns its result in eax

if(int_local1 >= eax)
goto label_412348;

Rather strange looking code, but it’s a start. Let’s be a little bit less literal about it, and
use our brain. Looking at the 3 lines:

eax = int_local1;
eax = eax + 1;
int_local1 = eax;

We see that it is really a very simple instruction, that could be simplified into a mere:

int_local1++;

The only difference between these two representations though, is that EAX no longer has
the same value after the new representation. We should take care in doing so, because the
value in EAX might be used afterwards.
In this case, the next line is:

 eax = dw_param1;

Which means we can freely replace the instruction, since EAX gets overwritten before
being read anyway. The next part:

 eax = dw_param1;
 eax = lstrlenA(eax); // lstrlenA returns its result in eax

if(int_local1 >= eax)
goto label_412348;

could also be made a lot easier to view, because you can combine a lot of instructions in
C. We can do it as follows:

if(int_local1 >= lstrlenA(dw_param1))
goto label_412348;

Again, we should now look at if EAX is used afterwards, so that we don’t miss another
location where this value was being used. On the very next line, however, EAX is
overwritten, so we are free to make this change. Because we know lstrlenA is expecting a
pointer to a string, we will rename the parameter now to pString to represent this,
giving us a total code of:

int_local1 = 0;
goto label_41230B;
int_local1++;

label_41230B:
if(int_local1 >= lstrlenA(pString))

goto label_412348;

Looking for further references to this section, we find the line

.00412346: EBBA jmps .000412302 -----↑ (3)

jumping to the line with int_local1++;, which makes it all appear to be big loop. If
you’re familiar with C coding, you might already have figured out what structure we are
looking at here. It seems to have the functionality of a ‘for’-loop. Let’s try to make a for-
loop that mimics this behavior (while also renaming int_local1 to i). Rewriting the
C code, we end up with:

for(i = 0; i < lstrlenA(pString); i++)
{
 //…rest of code…
}

It’s slowly beginning to make sense. We now know it is a function that goes through a
for-loop, ranging from 0 to the length of the string it gets as its (first) parameter. Now we
need to know what it does inside the loop.
The code was:

.0041231A: mov eax, pString
.0041231D: add eax,i
.00412320: mov cl,[eax]
.00412322: mov [ebp][-01],cl
.00412325: movzx eax,b,[ebp][-01]
.00412329: cmp eax,061 ;"a"
.0041232C: jl .000412346 -----↓ (1)
.0041232E: movzx eax,b,[ebp][-01]
.00412332: cmp eax,07A ;"z"
.00412335: jg .000412346 -----↓ (2)
.00412337: movzx eax,b,[ebp][-01]
.0041233B: sub eax,020 ;" "
.0041233E: mov ecx, pString
.00412341: add ecx, i
.00412344: mov [ecx],al

Here, we find another local variable in use. It appears to be of the unsigned char
type, because it is byte size (referenced by using a byte ptr), and is used as unsigned (by
the movzx instructions). In Pseudo-C, we now have:

eax = pString;
eax = eax + i;
cl = *(eax);
ch_local2 = cl;

eax = (DWORD) ch_local2;
if(eax < 0x61) // “a”

goto label_412346;

eax = (DWORD) ch_local2;
if(eax > 0x7A) // “z”
 goto label_412346;

eax = (DWORD) ch_local2;
eax = eax – 0x20;
ecx = pString;
ecx = ecx + i;
*(ecx) = al;

Let’s make this code a bit more clever, and thus shorter, renaming the character to c for
shortness, as well as assuming its using the char as a character and not as a byte sized
number:

c = pString[i];

if((c < ‘a’) || (c > ‘z’))
 goto label_412346;

pString[i] = c-0x20;

We notice that the address 412346h is simply the end of the loop, so we can either
replace the ‘goto label_412346’ with a ‘continue;’, or we can invert the
conditional jumps. I chose the latter, because it seemed like a more natural way to
describe the condition, as you will see later. Inverting the condition might require some
explanation:
When the program goes to the end of the loop if (c<‘a’)||(c>‘z’), then it
DOESN’T go to the end of the loop, if (c>=’a’)&&(c<=’z’), which allows an if
construction as follows:

c = pString[i];

if((c >= ‘a’) && (c <= ‘z’))

pString[i] = ch_local2-0x20;

//…end of loop

This makes it look MUCH clearer. We can now begin to understand what this code is
doing. Let’s put all of the code we have together.

void SomeFunction(char* pString)
{
 int i; //Local variables have to be declared
 unsigned char c; //at the start of the function.

for(i = 0; i < lstrlenA(pString); i++)
{

c = pString[i];

if((c >= ‘a’) && (c <= ‘z’))

pString[i] = c-0x20;
}

}

A great deal shorter than the ASM code we started from. Now that we’ve converted all
this back to C, we should be able to figure out the task it performs.
It takes every character in the string it gets, and if that character is between ‘a’ and ‘z’
(so, if it is a lowercase alphabetic character), it subtracts 20h.This is exactly the
difference between the uppercase and lowercase characters. So what this function does is
‘convert a string to uppercase’, and should be renamed as ToUppercase.
In this manner all code can slowly be converted, though some structures are harder to
identify than others.

Conclusion

A normal engineering process goes from the source code (C) to a binary format (.exe),
while what I have described in this document goes entirely the other way. That is the
reason this process is called Reverse Engineering. We have seen this is not impossible to
do. With tools however, the task can be simplified a lot. The main tool one would use for
this kind of thing is IDA. It is both flexible and powerful, and even for the translation
back to (pseudo) C code there are plugins under development*. To create proper C code
from an ASM or Pseudo-C listing is a task not to be underestimated. It is quite hard to
recognize high level structures at first. A good exercise is to write your own program in
MSVC++, and debug it with the disassembly view on. This gives your C code along with
the ASM code it represents, which will give you a good understanding of how the two
relate to one another.

As with most things, practice makes perfect.

Kwazy Webbit

Webbithole: http://its.mine.nu/
RETeam: http://www.reteam.org/

Special thanks go to DEATH, for proofreading this essay and being a perfectionist :-)

* IDA (http://www.datarescue.com/) combined with Lantern (http://www.xopesystems.com/lantern/) forms a tool that
automates almost the entire process I described in this document. The only thing it doesn’t do is create actual C code,
since that requires a lot of understanding and recognition of structures. It does create the Pseudo-C code I have used
throughout the ‘Assembly Code to C’ chapter. See their site for details.

http://its.mine.nu/
http://www.reteam.org/
http://www.datarescue.com/
http://www.xopesystems.com/lantern/

Appendix A1

Key to decoding single-byte instructions (#group references Appendix A2)

IA-32 architecture
one byte opcodes

xxh

x0h

x1h x2h x3h x4h x5h x6h x7h

0xh

ADD
Eb,Gb

ADD
Ev,Gv

ADD
Gb,Eb

ADD
Gv,Ev

ADD
AL,Ib

ADD
rAX,Iz

PUSH
ES

POP
ES

1xh

ADC
Eb,Gb

ADC
Ev,Gv

ADC
Gb,Eb

ADC
Gv,Ev

ADC
AL,Ib

ADC
rAX,Iz

PUSH
SS

POP
SS

2xh

AND
Eb,Gb

AND
Ev,Gv

AND
Gb,Eb

AND
Gv,Ev

AND
AL,Ib

AND
rAx,Iz ES: DAA

3xh

XOR
Eb,Gb

XOR
Ev,Gv

XOR
Gb,Eb

XOR
Gv,Ev

XOR
AL,Ib

XOR
rAX,Iz SS: AAA

4xh

INC
eAX

INC
eCX

INC
eDX

INC
eBX

INC
eSP

INC
eBP

INC
eSI

INC
eDI

5xh

PUSH
rAX

PUSH
rCX

PUSH
rDX

PUSH
rBX

PUSH
rSP

PUSH
rBP

PUSH
rSI

PUSH
rDI

6xh

PUSHA
PUSHAD
(80186+)

POPA
POPAD

(80186+)

BOUND
Gv,Ma

(80186+)

ARPL
Ew,Gw

(80286+)
FS:

(80386+)
GS:

(80386+)
OPSIZE:
(80386+)

ADSIZE:
(80386+)

7xh

JO
Jb

JNO
Jb

JB
Jb

JNB
Jb

JZ
Jb

JNZ
Jb

JBE
Jb

JNBE
Jb

8xh

group #1
Eb,Ib

group #1
Ev,Iz

group #1*
Eb,Ib

group #1
Ev,Ib

TEST
Eb,Gb

TEST
Ev,Gv

XCHG
Eb,Gb

XCHG
Ev,Gv

9xh

NOP

PAUSE (F3h)
(see CPUID)

XCHG
rCX,rAX

XCHG
rDX,rAX

XCHG
rBX,rAX

XCHG
rSP,rAX

XCHG
rBP,rAX

XCHG
rSI,rAX

XCHG
rDI,rAX

Axh

MOV
AL,Ob

MOV
rAX,Ov

MOV
Ob,AL

MOV
Ov,rAX

MOVS
Yb,Xb

MOVS
Yv,Xv

CMPS
Yb,Xb

CMPS
Yv,Xv

Bxh

MOV
AL,Ib

MOV
CL,Ib

MOV
DL,Ib

MOV
BL,Ib

MOV
AH,Ib

MOV
CH,Ib

MOV
DH,Ib

MOV
BH,Ib

Cxh

group #2
Eb,Ib

(80186+)

group #2
Ev,Ib

(80186+)
RET near

Iw RET near LES
Gz,Mp

LDS
Gz,Mp

group #12
Eb,Ib

group #12
Ev,Iz

Dxh

group #2
Eb,1

group #2
Ev,1

group #2
Eb,CL

group #2
Ev,CL

AAM
Ib

AAD
Ib

SALC
SETALC XLAT

Exh

LOOPNE
LOOPNZ

Jb

LOOPE
LOOPZ
Jb

LOOP
Jb

JCXZ
JECX
Jb

IN
AL,Ib

IN
eAX,Ib

OUT
Ib,AL

OUT
Ib,eAX

Fxh

LOCK:
INT1

(ICEBP)
(80386+)

REPNE: REP:
REPE: HLT CMC group #3

Eb
group #3

Ev

xxh

x8h

x9h xAh xBh xCh xDh xEh xFh

0xh

OR
Eb,Gb

OR
Ev,Gv

OR
Gb,Eb

OR
Gv,Ev

OR
AL,Ib

OR
rAX,Iz

PUSH
CS

two byte
opcodes
(80286+)

1xh

SBB
Eb,Gb

SBB
Ev,Gv

SBB
Gb,Eb

SBB
Gv,Ev

SBB
AL,Ib

SBB
rAX,Iz

PUSH
DS

POP
DS

2xh

SUB
Eb,Gb

SUB
Ev,Gv

SUB
Gb,Eb

SUB
Gv,Ev

SUB
AL,Ib

SUB
rAX,Iz

CS:

Hint Not
Taken

for Jcc (P4+)

DAS

3xh

CMP
Eb,Gb

CMP
Ev,Gv

CMP
Gb,Eb

CMP
Gv,Ev

CMP
AL,Ib

CMP
rAX,Iz

DS:

Hint Taken
for Jcc (P4+)

AAS

4xh

DEC
eAX

DEC
eCX

DEC
eDX

DEC
eBX

DEC
eSP

DEC
eBP

DEC
eSI

DEC
eDI

5xh

POP
rAX

POP
rCX

POP
rDX

POP
rBX

POP
rSP

POP
rBP

POP
rSI

POP
rDI

6xh

PUSH
Iz

(80186+)

IMUL
Gv,Ev,Iz
(80186+)

PUSH
Ib

(80186+)

IMUL
Gv,Ev,Ib
(80186+)

INS
Yb,DX

(80186+)

INS
Yz,DX

(80186+)

OUTS
DX,Xb

(80186+)

OUTS
DX,Xz

(80186+)

7xh

JS
Jb

JNS
Jb

JP
Jb

JNP
Jb

JL
Jb

JNL
Jb

JLE
Jb

JNLE
Jb

8xh

MOV
Eb,Gb

MOV
Ev,Gv

MOV
Gb,Eb

MOV
Gv,Ev

MOV Mw,Sw
MOV Rv,Sw

LEA
Gv,M

MOV Sw,Mw
MOV Sw,Rv group #10

9xh

CBW
(8088)
CBW/CWDE
(80386+)

CWD
(8088)
CWD/CDQ
(80386+)

CALL
Ap

WAIT
FWAIT

PUSHF
Fv

POPF
Fv SAHF LAHF

Axh

TEST
AL,Ib

TEST
rAX,Iz

STOS
Yb,AL

STOS
Yv,rAX

LODS
AL,Xb

LODS
rAX,Xv

SCAS
Yb,AL

SCAS
Yv,rAX

Bxh

MOV
rAX,Iv

MOV
rCX,Iv

MOV
rDX,Iv

MOV
rBX,Iv

MOV
rSP,Iv

MOV
rBP,Iv

MOV
rSI,Iv

MOV
rDI,Iv

Cxh

ENTER
Iw,Ib

(80186+)
LEAVE

(80186+)
RET far

Iw RET far INT3 INT
Ib INTO IRET

Dxh

ESC
0

ESC
1

ESC
2

ESC
3

ESC
4

ESC
5

ESC
6

ESC
7

Exh

CALL
Jz

JMP
Jz

JMP
Ap

JMP
Jb

IN
AL,DX

IN
eAX,DX

OUT
DX,AL

OUT
DX,eAX

Fxh

CLC STC CLI STI CLD STD group #4
INC/DEC

group #5
INC/DEC etc.

note: The opcodes marked with * are aliases to other opcodes.

Appendix A2

IA-32 architecture
opcode groups

mod R/M

xx000xxx xx001xxx xx010xxx xx011xxx xx100xxx xx101xxx xx110xxx xx111xxx

group #1
(80..83h)

ADD

OR ADC SBB AND SUB XOR CMP

group #2
(C0..C1h)
(D0..D3h)

ROL ROR RCL RCR SHL SHR SAL* SAR

group #3
(F6..F7h)

TEST
Ib/Iz

TEST*
Ib/Iz

NOT

NEG MUL
AL/rAX

IMUL
AL/rAX

DIV
AL/rAX

IDIV
AL/rAX

group #4
(FEh)

INC Eb

DEC Eb

group #5
(FFh)

INC Ev

DEC Ev CALL Ev CALL Mp JMP Ev JMP Mp PUSH Ev

group #6
(0Fh,00h)

SLDT Mw
SLDT Gv

STR Mw
STR Gv

LLDT Mw
LLDT Gv

LTR Mw
LTR Gv

VERR Mw
VERR Gv

VERW Mw
VERW Gv

JMPE
Ev

(IA-64)

group #7
(0Fh,01h) SGDT Ms

SIDT Ms
MONITOR
(C8h)
MWAIT
(C9h)
(see
CPUID)

LGDT Ms LIDT Ms SMSW Mw
SMSW Gv LMSW Mw

LMSW Gv
INVLPG M
(80486+)

group #8
(0Fh,BAh)

BT

BTS BTR BTC

group #9
(0Fh,C7h)

CMPXCHG
Mq

(see
CPUID)

group #10
(8Fh)

POP Ev

group #11
(0Fh,B9h)

UD2

UD2 UD2 UD2 UD2 UD2 UD2 UD2

group #12
(C6h)
(C7h)

MOV

group #13
(0Fh,71h)

PSRLW
PRq,Ib
(MMX)
(66h)
PSRLW
VRo,Ib
(SSE2)

PSRAW
PRq,Ib
(MMX)
(66h)
PSRAW
VRo,Ib
(SSE2)

PSLLW
PRq,Ib
(MMX)
(66h)
PSLLW
VRo,Ib
(SSE2)

group #14
(0Fh,72h)

PSRLD
PRq,Ib
(MMX)
(66h)
PSRLD

PSRAD
PRq,Ib
(MMX)
(66h)
PSRAD

PSLLD
PRq,Ib
(MMX)
(66h)
PSLLD

VRo,Ib
(SSE2)

VRo,Ib
(SSE2)

VRo,Ib
(SSE2)

group #15
(0Fh,73h)

PSRLQ
PRq,Ib
(MMX)
(66h)
PSRLQ
VRo,Ib
(SSE2)

(66h)
PSRLDQ
VRo,Ib
(SSE2)

PSLLQ
PRq,Ib
(MMX)
(66h)
PSLLQ
VRo,Ib
(SSE2)

(66h)
PSLLDQ
VRo,Ib
(SSE2)

group #16
(0Fh,AEh)

FXSAVE
M512
(see
CPUID)

FXRSTOR
M512
(see
CPUID)

LDMXCSR
Md

(SSE)

STMXCSR
Md

(SSE)
 LFENCE

(SSE2-MEM)
MFENCE

(SSE2-MEM)

CLFLUSH M
(see
CPUID)
SFENCE

(SSE-MEM)

group #17
(0Fh,18h)

PREFETCH-
NTA M

(SSE-MEM)

PREFETCH-
T0 M

(SSE-MEM)

PREFETCH-
T1 M

(SSE-MEM)

PREFETCH-
T2 M

(SSE-MEM)

HINT_NOP
M

(P6+)

HINT_NOP
M

(P6+)

HINT_NOP
M

(P6+)

HINT_NOP
M

(P6+)

note: The opcodes marked with * are aliases to other opcodes.

Appendix A3

IA-32 architecture
32bit mod R/M byte

r8(/r)
r16(/r)
r32(/r)
mm(/r)
xmm(/r)
sreg
eee
eee
/digit (opcode)
reg=

AL
AX
EAX
MM0
XMM0
ES
CR0
DR0
0
000

CL
CX
ECX
MM1
XMM1
CS
CR1
DR1
1
001

DL
DX
EDX
MM2
XMM2
SS
CR2
DR2
2
010

BL
BX
EBX
MM3
XMM3
DS
CR3
DR3
3
011

AH
SP
ESP
MM4
XMM4
FS
CR4
DR4
4
100

CH
BP
EBP
MM5
XMM5
GS
CR5
DR5
5
101

DH
SI
ESI
MM6
XMM6
res.
CR6
DR6
6
110

BH
DI
EDI
MM7
XMM7
res.
CR7
DR7
7
111

effective address mod R/M value of mod R/M byte (hex)

[EAX]
[ECX]
[EDX]
[EBX]
[sib]
[sdword]
[ESI]
[EDI]

00

000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

[EAX+sbyte]
[ECX+sbyte]
[EDX+sbyte]
[EBX+sbyte]
[sib+sbyte]
[EBP+sbyte]
[ESI+sbyte]
[EDI+sbyte]

01

000
001
010
011
100
101
110
111

40
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E
7F

[EAX+sdword]
[ECX+sdword]
[EDX+sdword]
[EBX+sdword]
[sib+sdword]
[EBP+sdword]
[ESI+sdword]
[EDI+sdword]

10

000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

AL/AX/EAX/MM0/XMM0
CL/CX/ECX/MM1/XMM1
DL/DX/EDX/MM2/XMM2
BL/BX/EBX/MM3/XMM3
AH/SP/ESP/MM4/XMM4
CH/BP/EBP/MM5/XMM5
DH/SI/ESI/MM6/XMM6
BH/DI/EDI/MM7/XMM7

11

000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
E1
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF

	Introduction
	Binary to Hexadecimal
	Hexadecimal to Assembly Code
	Assembly code to C
	Conclusion
	Appendix A1
	Appendix A2
	Appendix A3

