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Abstract

This paper describes LOKI97, a new private key block cipher with 128-bit
data and a 256-bit key schedule, which can be initialised by 128, 192, or 256-bit
keys. The data computation uses 16 rounds of a balanced Feistel network with
a complex function f which incorporates two S-P layers. The 256-bit key sched-
ule uses 48 rounds of an unbalanced Feistel network using the same complex
function f to generate the subkeys. The cipher specification is given, followed
by some background and design considerations, and a preliminary analysis.

1 Introduction

LOKI97 is a new 16 round Feistel cipher on 128-bit data using a complex non-linear
function f, with a 256-bit key schedule which can be initialised using 128, 192, or
256-bit keys. It has evolved from the earlier LOKI89 [BPS90], and LOKI91 [BKPS91]
64-bit block ciphers, with a strengthened key schedule, and a larger keyspace.
The overall structure design and analysis of LOKI97 was performed by Dr Lawrie
Brown during his 1997 sabbatical !, with assistance and critique from Professors
Josef Pieprzyk and Jennifer Seberry. The design and analysis of the S-box functions
was done by Prof. Pieprzyk. LOKI97 has been submitted as a candidate algorithm
for the US NIST Advanced Encryption Standard [NIS97] call.

The specification for the new LOKI97 cipher is presented. Discussion of its
background, design rationale, expected efficiency, and a preliminary analysis then
follows.

2 LOKI97 Specification

LOKI97 is a private key block cipher which encrypts 128-bit data blocks using 128,
192, or 256-bit keys.

2.1 Data Computation

LOKI97 encrypts a 128-bit plaintext block to create a 128-bit ciphertext block. The
data computation is initialised by dividing the 128-bit plaintext input value [L|R]
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into two 64-bit words:
Ly=L
Ry=R

These are then processed through 16 rounds (¢ = 1,16) of a balanced Feistel

network:
R;=1L; 1 zor f(Ri-1+ SK3; 2,5K3; 1)
Li=R; 1 +SKs3; >+ SKj;

Each round uses zor (addition modulo 2) and integer addition + (modulo 2%*) of
the 64-bit data values, along with the output of the complex nonlinear function
f(A, B) which provides maximal avalanche between all its input bits.

The resulting 128-bit ciphertext output value is composed of:

[R16|L16]

after the final round, ie with no final swap as usual.
The overall data computation thus looks as follows:
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The decryption computation involves splitting the ciphertext into two 64-bit
words:

[R16|L16]



and then running the rounds in reverse. ie: use 16 rounds (i = 16, 1)

L;_1 = R; xor f(L, — SK3¢,SK31'71)
Ri_y=L;— SK3; — SK3;_»

The decrypted 128-bit plaintext value is given by
[Lo| Ro]

This is equivalent to performing the encryption computation with the subkeys
in reverse order, and with additive inverses for SK3;, SK3; ».

2.2 Key Schedule

LOKI97 uses a key schedule based on an unbalanced Feistel network (as per
Schneier and Kelsey [SK96]), operating on four 64-bit words. It uses the same func-
tion f(A, B) as the data computation to provide sufficient non-linearity to ensure
that computing related keys is infeasible.

The key schedule is initialised, based on the size of the key supplied, into the
four 64-bit words [K4o|K3¢|K2¢|K1p] as follows:

Given a 256-bit key [K,| K| K | K4, let [K4o|K30|K20|K10] = [Ko|Ky|K.|K4]

Given a 192-bit key [K,|Kp| K], let
[K 40| K30|K20|K1o] = [Ko|Kp|Ke|f(Ka, Kp)]

Given a 128-bit key [K,|K}), let
[K 40| K30|K20|K1o] = [Ko|Kp|f(Kp, Kao)|f(Ka, Kb)]

These are then processed through 48 rounds (i = 1,48) to compute the 48 sub-
keys SK; as follows:

SK;=K1; = K4; 1 zor g;(K1; 1,K3; 1,K2; 1)

K4,=K3; 3
K3z = KZ,-,I
KZL = K]-z'—l
where

9i(K1,K3,K2) = f(K1+ K3 + (Deltax i), K2)
Delta = |(sqrt(5) — 1) x 253 | = 9E3T7T9BITF4ATC15:6

Three rounds of the key schedule are required to produce the three subkeys for
each round of the data computation. Thus a total of 48 rounds are required for the
key schedule, for a cost of approx three encryption computations.

The integer addition (module 2%4) of K1 + K3 + (Delta * i) forms an incom-
patible group with the xor used to compute the previous subkey, as in the data
computation. It includes multiples mod 2% of Delta, a value derived from the
golden ratio by taking the integer part after multiplying it by 293, and used to re-
duce any symmetry problems in the key schedule.

Decryption is equivalent to encryption with the subkeys used in reverse order
with (additive) inverses of the SK3; o and SK3; subkeys. These will need to be
precomputed in encrypt order first - there is no reverse shortcut as for LOKI89 and
LOKI91.



2.3 Function f(A,B)

The highly non-linear function f(A, B) takes two 64-bit input values A and B, pro-
cesses them using two layers of S-boxes with the highest possible non-linearity,
to produce a 64-bit output. The two permutations are used to ensure maximal
avalanche between all bits in the function. It is specified as follows:

f(4, B) = Sb(P(Sa(E(K P(4, B)))), B)
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Additional detail of the various component operations used is given below.
Note the bit numbering convention used is that within each word, bit 0 is the right-
most, least-significant bit; and the highest numbered bit (31, 63, or 127 in 4, 8, or 16
byte words respectively) is the leftmost, most-significant bit.

KP(A,B) a very simple keyed permutation which splits its 64-bit input A into
two 32-bit words, and uses the lower (rightmost) 32-bits of input B to decide
whether to exchange corresponding pairs of bits in these words (if key bit
is 1), or not (if key bit is 0), similar to that used in ICE [Kwa97]. It may be
computed as:

KP([Al|Ar), SKr) = [((Al&—SKr)|(Ar&SKr))|(Ar&—SKr)|(Al&SKT))]

E() an expansion function, similar to LOKI91 but shifted for easier implemen-
tation, which selects overlapping groups of 13 bits (S1) or 11 bits (S2), so
that at least some bits influence 2 S-boxes simultaneously, and with the
preceeding addition, means all bits have some influence on multiple S-
boxes. E creates a 96 bit output value from the 64 inputs bits as follows:
[4—0,63 — 56|58 — 48|52 — 40[42 — 32|34 — 24|28 — 16|18 — 8|12 — 0].

Sa(), Sb() are two columns of S-boxes, composed by concatenating boxes S1 and
S2, with Sa()=[S1,52,51,52,52,51,52,51], and Sb()=[S2,52,51,51,52,52,51,51]. In
Sa() the inputs are data+key from the output of E, whilst in Sb() the upper
bits are pure key bits (from the lower,rightmost 32-bits of B).



P() permutation to diffuse S-Box outputs across full 64-bit width, using a regular,
latin-square, pattern, similar to LOKI91, but with a slight change so the same
output never goes to the corresponding input. P maps input bits [63 — 0] to
output bits:

56,48, 40, 32, 24, 16, 08, 00, 57, 49, 41, 33, 25,17, 09, 01,
58,50,42, 34, 26, 18, 10, 02, 59, 51,43, 35, 27, 19, 11, 03,
60, 52,44, 36,28, 20, 12, 04, 61, 53, 45, 37, 29, 21, 13, 05,
62,54, 46, 38, 30,22, 14, 06, 63, 55, 47, 39, 31, 23, 15, 07]

ie. input bit 63 goes to output bit 56, input 62 to output 48 etc.

This function can theoretically be implemented with 24 table lookups (8 each
for Sa, P, and Sb), plus some and’s, or’s, xor’s, shifts and adds for each round, mak-
ing it reasonably fast and efficient. Using compiled code of course wont achieve
this ideal.

2.4 S-boxes

The S-boxes chosen for LOKI97 use cubing in a galois field GF'(2") with n odd,
as this has some highly desirable properties (discussed below). In order to use
odd sized inputs, S1 uses 13 input bits, and S2 uses 11. These are alternated as
specified above to combine to work on an even sized input block. The input value
isinverted (so thata 0 or 1 input does not give 0 or 1 output), and the output values
are masked down to select the lower 8 output bits only. The S-box functions are:

S1[z] = ((z xor 1LFFF)® mod 2911) & FF, in GF(2'3)
S2[z] = ((x xor TFF)3 mod AA7) & FF, in GF(2'!)

(nb. all constants above are written in hex, all computations are done as polyno-
mials in GF'(2™))

2.5 Certification Triples

A sample LOKI97 certification triple is:

LOKI97 key: 000102030405060708090A0BOCODOEOF

101112131415161718191A1B1C1D1E1F
LOK197 plain: 000102030405060708090A0BOCODOEOF
LOK197 cipher: 75080E359F10FE640144B35C57128DAD

A trace of this triple, showing all the subkeys, round values, and function f
values, is given in Appendix A.

3 Design Background

LOKI97 is the latest in a family of block ciphers which includes LOKI89 and
LOKI91, although in the light of lessons learnt from these earlier ciphers, its struc-
ture has evolved somewhat.

LOKI89 is a 64-bit, 16 round, symmetric block cipher with a 64-bit user key. It
was originally designed by L. Brown, ]J. Pieprzyk and J. Seberry in 1990 [BPS90],
and later re-designed (and renamed LOKI91), with improved resistance to differ-
ential cryptanalysis, by L. Brown, M. Kwan, ]. Pieprzyk and J. Seberry [BKPS91].

The original version of LOKI89 was analysed by Biham and Shamir [BS91].
They found that whilst reduced round versions of LOKI89 could be susceptible to
differential cryptanalysis, the full 16 round version was not.



Following the redesign to LOKI91 to strengthen its immunity, it was analysed
by Knudsen [Knu92]. He found that there was no characteristic with a probablility
high enough to do a sucessful differential attack; that the size of the image of the
F-function in LOKI91 is 8/1322%2; and that there is a chosen plaintext attack that
reduces an exhaustive key search on LOKI91 by almost a factor of 4 using 232 + 2
chosen plaintexts. In a subsequent paper, Knudsen [Knu94] discusses the concept
of weak hash keys in LOKL

Biham [Bih94] introduced some new types of cryptanalytic attacks which ex-
ploit relations between sub-keys. He applied these attacks to both versions of
LOKI. For LOKI91 the complexity is of O(2%'), which is faster than exhaustive
search and comparable to Knudsen's results.

Tokita, Sorimachi, and Matsui [TSM94] have examined the susceptibility of
LOKI91 to linear cryptanalysis, and have found 12 or more round versions to be
immune. Subsequently, Knudsen and Robshaw [KR96] have made incremental
improvements to the search efficiency using non-linear approximations, but 12 or
more rounds in LOKI91 are still immune. Recently Sakurai and Furuya [SF97] have
described further incremental advances.

LOKI91 is currently regarded as a reasonably secure cipher, immune to both
differential and linear cryptanalysis, whose main deficiencies are the linear key
schedule which leaves it susceptible to some related key attacks, and the keysize
which, given those attacks, is effectively about 2%°.

LOKI91 is described in Schneier [Sch96], which has led to some continued in-
terest in its use by organisations wanted an unencumbered encryption algorithm.
This is likely to continue with the release of a small, fast Java version in the publi-
cally available Cryptix library [GN97].

4 Design Considerations

Given experience with the earlier LOKI designs, it was felt that some form of Feis-
tel cipher was still the most appropriate approach. The core design properties for
such ciphers are for them to demonstrate appropriate avalanche and completeness
effects [WT86]. As with the earlier LOKI designs, the general approach to ensuring
these properties was to partition the design into two phases:

e First an overall algorithm structure was designed which provides these prop-
erties on the assumption that the S-boxes possess them.

e Second, appropriate S boxes were selected with the desired characteristics.

Consideration was given to the necessary conditions for a secure Feistel cipher
noted by Knudsen [Knu93]:

o there are no simple relations

e all keys are equally good

e resistance to differential attacks
e resistance to linear attacks

A number of other modern private-key block ciphers were reviewed in the
early design phase, including Blowfish, CAST, ICE, IDEA, SAFER, SPEED and
TEA (descriptions of most of which may be found in Schneier [Sch96]). A num-
ber of variant approaches were seen in these, including in the use of:

e random vs designed S-boxes



¢ incompatible mixing operations
e complexity of round function vs number of rounds

Following this review, it was decided that LOKI97 would use designed S-boxes,
utilise two incompatible mixing operations (addition and XOR), and have a
smaller number of iterations of a complex round function.

Also, to provide a stronger key schedule than previous LOKI variants, it was
decided to use the same complex nonlinear round function in the key schedule, as
in the data computation. This results in the computation cost of the key schedule
being of the same order of magnitude as the data computation, that is not too costly
for applications with periodic key changes, but costly enough to modestly penalise
exhaustive key search operations which require a key change on each block.

41 The LOKI97 Round Function f(A, B)

The round function f : £¢ x £64 — $64 takes a 64-bit input and transforms it to
64-bit output using a 64-bit subkey. The key features in the round function are that:

e it applies two S-boxes: S1 and S2 composed into two layers of an S-P net-
work. In each layer S1 and S2 are used four times each;

o the S-P network satisfies the completeness property, that is each output bit is
a complex function of all input bits;

o the 64-bit subkey hides the structure of the round function when the crypt-
analyst does not know the subkey.

The major components of the round function are the two S-boxes: S1 and S2; and
the permutations KP, E and P.

4.2 Rationale for the S-box Selection
S-boxes are required to satisfy the following properties:

1. S-boxes must be balanced, i.e. each output Boolean function must contain
the equal number of zeros and ones in its truth table.

2. Any output (input) Boolean function of an S-box must be highly nonlinear,
that is there is no “good” approximation of a single output (input) function
by a linear function.

3. S-boxes should satisfy the SAC criterion, i.e. a single bit change on the input
causes changes on approximately half of the output bits.

4. S-boxes should have a “good” XOR profile. In other words, the profile must
be relatively uniform with the smallest and biggest entries not wildly differ-
ent from the average. Typically, it is also desirable that the entries related to
zero output difference should be as small as possible (preferably all equal to
or smaller than the average).

The S-boxes applied in LOKI97 are designed using cubing in GF(2™) or more
precisely: S(z) : GF(2") — GF(2") where S(z) = z® mod p(z) and p(z) is an
irreducible polynomial used for GF(2") arithmetic computations. Note that the
cyclic group in GF(2") has the order 2" — 1 and consists of all nonzero elements
of the field. It is well known that exponentiation z* mod p(z) is a permutation
if a does not divide 2" — 1. The lowest exponent which generates a nonlinear
permutation is 3 provided that 3 does not divide 2" — 1. This condition holds



whenever n is odd (see [Pie92]). In LOKI97, the S1 and S2 S-boxes use cubing
in GF(2'3) and GF(2"), respectively. As these S-boxes use cubing for odd n, all
output Boolean functions are balanced. This remains true even after the outputs
are truncated to 8 bits. Cubing permutations in GF'(2") are highly nonlinear as
any output function shares the nonlinearity with the function(see [Pie92])

n(x) =122+ ...+ Tn2Tn 1+ Tn
whose nonlinearity is equal to

1 1

N(U) = 9 o(nt1)/2°

Observe that n(z) for z,, = 0 and restricted to (n — 1) variables is a bent function
(attains the maximum nonlinearity in the space of (n — 1) Boolean variables). The
high nonlinearity of all output functions implies that the SAC property holds.

A number of generators were trialed before the final selection of the ones used
in LOKI97. All generators gave functions with maximal non-linearity, but there
were small differences in other characteristics, such as variations in the single bit
avalanche characteristics. Those chosen were a compromise which resulted in a
reasonable balance of the various measures tested (see the later preliminary anal-
ysis section for some of the figures).

4.2.1 XOR Profile

Consider the XOR profile of cubing permutations. We follow the standard nota-
tion, that is, the XOR profile is represented by 2™ x 2" table where A € GF(2") is
the input difference and 6 € GF(2") is the output difference. A value of A labels
a row and § indicates a column in the XOR profile table. Thus A = z + y where
z,y are two input values from GF(2") and § = 23 + y? is the corresponding output
difference. After some simple transformations, we obtain

§ = A(z? + Az + A?) (1)

The entry (A, ) in the XOR profile indicates the number of z values for which
Equation (1) holds. Take the first row and column of the XOR profile, i.e. A =6 =
0. Equation (1) holds for all z € GF(2") so the entry (A,d) = (0,0) is equal to 2™.
It is obvious that if Equation (1) holds for z than it must be satisfied for y = 2 + A.
To see that this is true, we start from Equation (1) which holds for z. So

§ =A(z® + Az + A?)
_A(A +2) + Ad)
Aly? + Aly + A))
A(y? + Ay + A?)

and Equation (1) holds also for y. We have proved the following lemma.

Lemma 4.2.1 Given a cubing permutation and its XOR profile. If x € GF(2™) satisfies
Equation (1), then there is y = x + A for which the same equation holds. In other words,
all entries of the XOR profile are even.

The next lemma shows that the XOR profile has only zero and twos are its
entries.

Lemma 4.2.2 Given a cubing permutation and its XOR profile. If x € GF(2™) satisfies
Equation (1) for some fixed (A, d), then any transformation z = x + « (o # A) causes
Equation (1) to hold for z with §; # 6.



Proof : We start from Equation (1). After substituting z = z + a, we get

§ =A((z+a)?+A(z+a) + A?)
=A(AZ + Aa+a? + Az +2?)

which gives the following
§+A%a+a®A =A%+ Az + A?).

Write §; = §+A%a+a?A. What remains to be proved is that A%a # a?A for A # a.
This part is proved by contradiction. Assume that A?a = o?A. As we work with
GF(2"), there is a primitive element g which generates all nonzero elements of the
field. Let A = g® and a = g°. Therefore

A2a — g2b+a and a2A — g2a+b
The assumption that A2a = a2?A. implies that
2b+a=2a+b (mod2™-1)

which is equivalent to the congruence that a = b mod 2™ — 1. This is the required
contradiction which proves that A%a # a®A as long as A # « and shows that
01 # 6. O

Theorem 4.2.1 Given a cubing permutation in GF(2™), every row in the XOR profile
consists of entries either 0 or 2.

Proof: (Sketch) Note that the entries in each row must sum up to 2”. A given entry
(A, 6) contains the number of  values for which Equation (1) holds. Lemma (4.2.1)
says that all entries must be even. According to Lemma (4.2.2), every z = = +
where a # A falls into some other entry (A, 7). d

For further background, see [Nyb94].

The above considerations are valid for the cubing permutation on the full n x n
S-box. What happens if we cut off some output bits ? Clearly the resulting (n x m)
S-box is no longer a permutation (m < n). Some observations for shortened (n xm)
S-boxes based on cubing are:

e the number of rows in the XOR profile is still equal to 2™ but the number of
columns is 2™,

e sum of all entries in every row equals 2%,

e anentry (A,d) (A € GF(2™), § € GF(2™)) is the sum of all entries (A, ') of
the full n x n XOR profile for which ¢’ € GF(2") equals § € GF(2™).

Consider our two selected S-boxes. S1 is 13 x 8 S-box. As the XOR profile of
the cubing permutation contains zeros and twos only, we expect that the XOR
profile of S1 may have the biggest entry 2 - 25 = 64 when all 25 merged entries are
equal to 2. Some smaller entries occur when the folding down procedure (caused
by dropping the output bits) mixes zero entries with nonzero entries of the XOR
profile of the cubing permutation.

S2 is 11 x 8 S-box. The biggest entry is 2 - 23 = 16 if all merged entries for
the cubing permutations are equal to 2. It is expected that some other entries are
multiple of 2 not exceeding 16.



4.3 Rationale for Permutations KP, E and P

The permutations are required to provide the necessary diffusion of the outputs
from the S-boxes over as many of the S-box inputs in the next layer as possible.

The keyed permutation KP acts to obscure which S-box any given input bit
will feed to in the round. It does this by selectively exchanging, under the control
of some subkey bits, pairs of input bits. Given the arrangement of the following
layer of S-boxes, it causes the bits to swap between an S1 input and an S2 input.
Thus any attack has to consider probabilities in both boxes. The idea of this keyed
permutation is taken from that used in the ICE cipher [Kwa97].

Permutation E selects overlapping groups of either 13 bits (for S1) or 11 bits
(for S2). It ensures that some of the input (combined data and key) bits influence 2
S-box inputs simultaneously, restricting which bits can be feasibly used for attacks.

Permutation P provides the main diffusion function. Following the same prin-
ciples used in the earlier LOKI designs, this was selected to use a regular latin-
square pattern, as this has been found to provide the fastest possible diffusion in
the least number of rounds [BS90]. The particular pattern used here was selected
to ensure that no output bit is permuted to the same bit (as occured in the earlier
LOKI designs)

4.4 Rationale for the Key Schedule

As discussed previously, following the analyses of the existing LOKI ciphers, we
decided to use a non-linear key schedule with the same round function as used
for the data computation. Since the key schedule was to be initialised with up to
256-bit keys, an unbalanced Feistel network was needed [SK96]) being:

SK; =K1; = K4;_y zor g;(K1;_1,K3;_1,K2; 1)

K4; = K3;_,
K?)z = K2z’_1
K2, =K1;4

In order to accomodate the necessary 3 inputs, the function g(K1, K3, K2) was
defined from the existing round function as:

9i(K1,K3,K2) = f(K1+ K3+ (Deltax i), K2)
Delta = [(sqrt(5) — 1) x 253 | = 9E3779BITF4ATC154

The addition of multiples of Delta, a value derived from the golden ratio by tak-
ing the integer part after multiplying it by 2% is used to minimise any symmetry
affects in the key schedule, as was done in the TEA cipher [WN94].

In order to support the smaller 128 and 192-bit keys, an initialisation phase is
used that again uses the same non-linear function f(A4, B) to expand the supplied
bits up to 256-bits for the key schedule, in a complex non-linear manner.

5 Computational Efficiency

The following computational estimates have been obtained by using the program
aestime with the C reference implementation of LOKI97. This program, for each
key/block size combination, times the algorithm initialisation (which precomputes
the 10496 entries for S1, S2 and P), encryption of 1 megabyte of data (ie 65536 blocks
of 128 bits), decryption of 1 MB, and setting of 1000 encrypt and decrypt key pairs.
From this information, the estimates given below were derived. This program is
included in the C reference implementation.
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A few comments. Within the statistical timing variations, there is basically no
significant difference between the times for the various key/block sizes. This is as
expected since, apart from a small change in the initialisation of the key schedule,
there is no difference in the work done. Also, once the key schedule has been
computed (ie makeKey has been called), then since the key schedule information
is passed as one parameter to encryptBlock or decryptBlock, changing key incurs
no additional cost. Finally, in the raw timing figures, a time appears only for the
first initialisation, since the code knows it has been done before, it wont recompute
the tables.

5.1 Computational Speed on a Pentium 2 (Reference system)

The following figures were obtained from a number of runs of the aestime pro-
gram on a Pentium 2 /233MHz system with 64MB RAM. Runs were done with the
code compiled using Microsoft Visual C++ under Win95, as well as using gcc un-
der linux. There was no significant difference in the average values, as one would
expect for a computationally bound task (though the variance under Win95 was
rather higher). The following figures are typical of those obtained (nb times are in
millisecs, with a raw resolution around 5ms):

Key/Blk | Init | Encrypt IMb | Decrypt 1IMb | Key Init (1000 pairs)
128/128 | 30 | 1370 1340 40
192/128 | 0 1370 1320 40
256/128 | 0 1380 1330 35

From the above information, and noting that 1ms = 233000 clocks, we have the
following number of clock cycles to:

Key/Blk | Init Cipher | Encrypt 1 Blk | Decrypt 1 Blk | Init 1 Key | Change Key
128/128 | 6990000 4870 4764 4660 0
192/128 | 6990000 4870 4692 4660 0
256/128 | 6990000 4906 4728 4078 0

The code used in the LOKI97 library had 9706 bytes of instructions, and 12290
bytes of data (almost all of that being space for the precomputed S1, 52 and P

tables).

Given the functional specification for LOKI97’s S-boxes, a time-space tradeoff

is possible, since the S-box values can be computed either during the initialisation
stage, and saved in 2 tables totaling 10kB, or can be computed as needed during
the key scheduling and data computations.

5.2 Computational Speed on a PDP-11 (approx 8-bit system)

The following figures were obtained by running a version of the aestime program
on a PDP-11 simulator (this being the closest to an 8-bit system we could obtain).
The code was changed to traditional K&R C, with signed integer operations only,
and compiled using a PDP-11 Version 7 Unix K&R C compiler. It was then run on
a simulator which returned the current instruction number to the timing call. Thus
the following figures give the number of instructions executed for each stage:

Key/Blk | Init Encrypt 1IMb | Decrypt IMb | Key Init (1000 pairs)
128/128 | 437918 | 73016214 66608249 4156598
192/128 | 18 73016214 66630095 4178731
256/128 | 18 73016214 65418923 4203200

11



From the above information, we have the following number of instructions for
each stage. To convert these to timings, note that a PDP-11/04 for example took
typically around 3usec for integer and memory access instructions.

Key/Blk | Init Cipher | Encrypt 1 Blk | Decrypt 1 Blk | Init 1 Key | Change Key
128/128 | 437918 1114 1016 2078 0
192/128 | 437918 1114 1016 2089 0
256/128 | 437918 1114 998 2101 0

The code used in the LOKI97 library here had 11772 bytes of instructions, and
13754 bytes of data (most being space for the precomputed 51, S2 and P tables).

As before, a time-space tradeoff is possible between precomputing the S-boxes,
and computing the S-box functions as needed. Also the current code uses purely
integer operations on 8, 16 and 32 bit signed integers. A pure 8-bit implementation
would probably better be written to explicitly use byte and short values only, sav-
ing probably sub-optimal compiler approximations generated to handle the longer
word operations.

6 Expected Strength Against Attack

At the current time, although some possible attack approaches are suggested in
the analysis section below, there is no attack currently known on LOKI97 which
is faster than exhaustive key search. Also, since there are no known relations be-
tween keys, all possible key values need to be searched. Consequently, the ex-
pected strength of LOKI97 against attack at present is the cost of exhaustive key
search, which is:

Key/Blk | No Trials in Key Search
128/128 | 2'®
192/128 | 2192
256/128 | 2%56

As noted below, each trials involves a cost of about 4 encryptions.

7 Preliminary Analysis

7.1 Key Search

LOKI97 uses 128, 192, or 256-bit keys in a 256-bit key schedule. Even with the
shortest key size of 128-bits, exhaustive searches are currently infeasible, and likely
to remain so for some considerable time (barring revolutionary advances like the
development of practical quantum computers). The cost of such a search would,
for 128-bit keys be, on average, about O(2!2?7) trials (ie 50% of all keys), each of
which involves a cost of about 4 encryptions (approx 3 for the key schedule and 1
for the actual test encryption).

7.2 Characteristics of the Key Schedule

Given the use of the non-linear function g(K1, K3, K2) in the key schedule, it is
clear that there are no simple relations between any of the subkey bits, rather they
depend in a complex manner on all the input key bits. Thus there are no obvious
weak keys (those which result in constant, or repeated values, for all the subkeys).
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The best we can see doing is to derive those key values which result in up to
the first 4 subkeys (affecting only the first 1 ! /3 data rounds) being zero. These can
obviously be derived by using relationships between the input key values, which
take the form: [K4¢|K30|K20|K10], and linear relations between the subkeys.

One round of the LOKI97 key schedule looks as follows:

SK, = Klz = K4i_1 zror gi(Kli_l,K3i_1,K2i_1)

K4; = K3;_;
K3; = K2;_;
KZ,’ = K].z',l

In more specific cases, we could attempt to coerce the first few subkey values
to some known (preferably 0) value. Now the first few rounds of the key schedule,
given a 256-bit input key of [K4|K3|K2|K 1], can be specified as follows:

SK1 = K4 xor F(K3+K1+D,K2) nb. D = Delta
SK2 = K3 xor f(K2+SK1+2D,K1)

SK3 = K2 xor F(K1+SK2+3D,SK1)

SK4 = K1 xor f(SK1+SK3+4D,SK2)

SK5 = SK1 xor f(SK2+SK4+5D,SK3)

SK6 = SK2 xor f(SK3+SK5+6D,SK4)

so, attempting to solve for successive zero subkeys, we get:
SK1 = 0 implies
K4 = f(K3+K1+D,K2)

eg.
[F(D.0)|0]0]0] =
[A6ACC1AD4F7D648EO000000000000000000000000000000000000000000000000]

SK2 = SK1 = 0 implies

K3 = F(K2+2D,K1), and
K4 = F(F(K2+2D,K1)+K1+D,K2)
eg-

[F(f(2D0,0)+D,0)|f(2D,0)]|0]0] =
[D56AEDDD378763C8B3F8B84B61E6FD2D00000000000000000000000000000000]

SK3 = SK2 = SK1 = 0 implies

K2 = f(K1+3D,0), and

K3 = f(f(K1+3D,0)+2D,K1), and

K4 = f(F(F(K1+3D,0)+2D,K1)+K1+D,F(K1+3D,0))
eg.

[F(F(F(3D,0)+2D,0)+D, F(3D,0)) | F(F(3D,0)+2D,0) | F(3D,0)|0] =
[CC3533C1DAESE39076AC4AAAF1F443A7802D899C87BB07FDO000000000000000]

SK4 = SK3 = SK2 = SK1 = 0 implies

Ki = f(4D,0), and

K2 = f(f(4D,0)+3D,0), and

K3 = f(f(f(4D,0)+3D,0)+2D,f(4D,0)), and

K4 = f(f(F(¥(4D,0)+3D,0)+2D,F(4D,0))+F(4D,0)+D,F(¥(4D,0)+3D,0))
eg.

[DF74B90CE9D04479AF42CF6ACD63B8526E989FA699AB078EGBBO07E91228F095]

ie. there is only 1, completely specified value, which gives this.

SKn and lower =0 implies that SKn = 0 = f(nD,0), which is not true for any
n=1,48 (ie all values of use in the LOKI97). Thus it is not possible to have the
first n subkeys zero for any n > 4.
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So as a general statement, we can coerce the first 4 subkeys to zero (or indeed
any desired value), with exponentially decreasing possibilities as we fix successive
subkeys. After that, there are no obvious related values.

If we consider the shorter keys, then in fact the initialisation which specifies
K2 = f(K3,K4), and K1 = f(K4, Ks), make it extremely difficult to solve the
above equations, even for just SK'1 = 0, at all.

Given the use of the highly non-linear function f, we do not believe that any
trapdoors exist in the key schedule, or for LOKI97 in general, although no formal
analysis has as yet been done to verify this.

Consequently, the analysis of the key schedule can be summarised as follows:

e Weak Keys - no weak keys (keys which result in all subkeys being identical)
are known to exist.

e Key Complementation Properties - none are known

e Restrictions on Key Selection - given that no weak keys exist, there are no
keys known which must be avoided. It is probably desirable to avoid the 256
bit key specified above which results in the first 4 subkeys being 0, though
no attack is known which can exploit it.

7.3 Analysis of the S-boxes
The LOKI97 S-boxes are:

S1[z] = ((z xor 1FFF)3 mod 2911) & FF, in GF(2'3)
S2[z] = ((x wor TFF)? mod AA7) & FF, in GF(2!)

These are designed to have maximum non-linearity (hence the choice of cubing in
an polynomial galois field with n odd), have good immunity to differential crypt-
analysis, and have good avalanche properties.

The input values are inverted in order to remove the mapping of 0 -+ 0,1 — 1,
that otherwise would occur.

A number of generator polynomials are available in each field (630 in GF(2'?)
and 180 in GF(2'!)). All of these seem to generate basically equivalent XOR pro-
files, so this was not a determiner in their selection. There were however minor
differences in their avalanche characteristics, which led to the final selection.

7.3.1 XOR Profiles

The XOR profiles of the S-boxes are remarkably regular and relatively flat.

Analysis shows that for 51, the maximum value is 64 (occuring 32640 times)
out of a maximum of 8192; and further, in the zero output column (ie where dif-
ferent inputs give the same output value), the maximum value is just 32 (occuring
7936 times). These are as were predicted theoretically earlier. Should a charac-
teristic be constructed using one of these entries, it would have a probability of
Pr(32/8192) = Pr(1/256).

For S2, the maximum value is 16 (occuring 32640 times) out of a maximum
of 2048; and further, in the zero output column (ie where different inputs give
the same output value), the maximum value is just 8 (occuring 1792 times). The
individual row profiles are either all 8’s, or combinations of 0 and 16 in various
arrangements. A characteristic constructed using one of these entries, would also
have a probability of Pr(8/2048) = Pr(1/256).

Whilst these results imply that there are many possibilities with these values,
the actual probability of success is much lower than that seen in other ciphers (eg
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LOKI91). Further, the construction of the round function is designed to obscure
which S-bit any input bit will go to, and thus to greatly reduce the chance of suc-
cess.

7.3.2 Avalanche Properties

The avalanche characteristics of the chosen functions were evaluated by exhaus-
tively testing for each input bit position, for all other bit values, the effect of flip-
ping that bit on the output value. Counts were kept of which output bits changed
(the result being very even for both), as well for when no bits changed, or just one
bit changed (ie no avalanche occured). As shown in the table below, these cases
occured a small percentage of the time.

LOK197 Candidate S:(x+1fff)~3 mod 2911 GF(2713)
S _test - Avalanche Test & 1-bit Changes (rule 3)
ColTot 0 0O O O O O O O O o O o0 o0 O
No aval 16 16 16 16 16 O O 16 16 16 16 16 16 ( 176)
lbit av 128 128 128 128 128 96 128 128 128 128 128 128 128 (1632)

LOK197 Candidate S:(x+7ff)"3 mod aa7 GF(2711)

S _test - Avalanche Test & 1-bit Changes (rule 3)

ColTot 0 0O O O O O O O o o o 9
No aval 4 0 O 4 4 0 4 4 4 4 4 ( 32)
lbit av 32 24 32 32 32 16 32 32 32 32 32 ( 328)

In summary:

S1

Output bits Flip exactly 1/2 the time,

For any input bit, 0 change occurs in at most 1674096 (ie 1/256)

For any input bit, 1 bit change occurs in at most 128/4096 (ie 1/32)

S2

Output bits Fflip exactly 1/2 the time,

For any input bit, 0 change occurs in at most 4/1024 (ie 1/256)

For any input bit, 1 bit change occurs in at most 32/1024 (ie 1/32)

These results are comparable with those seen in the LOKI89 and LOKI91 S-box

function, which have been shown to be well designed with good security.

7.4 Differential Cryptanalysis

One round of the LOKI97 data encryption computation looks as follows:

R;=L; ;zor f(Ri—1 +SK3; 2,5K3; 1)
L;=Ri_1 + SK3;_» + SK3;

where the non-linear function f(A, B) is specified as:
f(A,B) = Sb(P(Sa(E(KP(A, B)))), B)

The first thing to note is that the use of integer addition in the R data value will
in general result in the loss of any desired fixed XOR difference (though there may
be a small fraction of cases for which this is not true). Thus conventional differ-
ential cryptanalysis would seem improbable. A modified variant using additive
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differences on the R data path was considered, however the initial keyed permu-
tation KP in f will ensure that fixed additive differences will be destroyed as the
bits are exchanged. So this approach also seems unlikely.

Consider conventional differential cryptanalysis again. Even assuming we
have some fraction of cases where the difference survives the addition, the pres-
ence of KP ensures that we end up attacking through either S1 or 52 in any round,
but we don’t know which. Given the attack probability is the same, this suggests
that a conventional 2-round characteristic, using S(z') — 0 with Pr(1/256) could
iterate at best (modulo the massive difficulties imposed by the additions of subkey
values and the keyed permutation K P) over 16 rounds with Pr(2764). It is not
expected that anything approaching this probability can be achieved in practise.

Use of the S(z') — 0 characteristic enables the second column of S-boxes in the
round to be ignored (since same input leads to same output). Any other charac-
teristic type (eg S(z') — z') will not be able to do this, and will thus have vastly
lower probabilities since both layers of S-boxes will be involved in each round.

7.5 Linear Cryptanalysis

Some bounds on the susceptability of LOKI97 to linear cryptanalysis can be set
knowing the non-linearity of its S-boxes.

Given a n xn S-box with its nonlinearity V'(S) = §— 54175, any linear approx-
imation £() of its inputs and outputs will correctly reflect the real dependencies
with the probability P, such that

1 1 <
9 9(nt1)/2 =

1

1
Pe< 5+ semee

S1 may be approximated by a linear equation £() with the probability

1 1
S 2T P <= 4+277,
2 < e_2+

Similarly S» may be approximated by a linear equation £() with the probability

1 1
——278<p <= 4+276,
2 Stesg+t

The round function is a network of Sy and S>. To find a linear approximation
of the input/output of the round function, we may attempt to find a linear path
created by linear approximation of two S». Note that any other path will include
at least one S; whose linear approximation is less accurate. Let the first Sy be
approximated by a linear function

€1(sl,...,311,u1,...,u8) =0

where s1,...,s11 are inputs and uq,...,us outputs and ¢;() is a linear function.
The second S> can be approximated by

! ! * *\ __
Kg(ul,...,ug,kl,kg,kg,sl,...,ss) =0

where ((u}, ..., us, ki1, k2, k3) are inputs and (s7, .. ., s5) outputs. The two approx-
imations ¢; and /¢ represent two independent random variables. If we combined
them then the linear approximation of the single round can be done no better than

(see [Mat93])

1 1
- 22—6 2—6:_ 2—11
R e
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In other words the best linear approximation of a single round is given by

1 —11 1 —11
5~ 2 S Ppeg < 5 +271

For full 16 rounds. we can find bounds for the probablity

1 1
2 1 915(9—11\16 _ = | 9-161
5 T 27) 5T

The best linear approximation for full 16 round is

1 —161 1 —161
5—2 SPbestS§+2 .

The best linear charactersitics for 14 rounds is
1 —141 1 —141

The last case might be useful when the approximations in the first and the last
rounds can be skipped (somehow).
The above computations are based on the following theorem.

Theorem 7.5.1 (Matsui [Mat93]) Given n independent random variables X, ..., X,
such that P(X; = 0) = p;and P(X; = 1) = 1—p, fori = 1,...,n. Then the probability
that X1 ®...® X, =0is

% +on1 1:[1(pz~ —0.5). @)

7.6 Overall Cipher Characteristics

Some preliminary trials have been run to characterise the overall cipher. In partic-
ular, some random trials have been run to determine its avalanche characteristics.
Avalanche is one of the key desired properties of block ciphers, where changing 1
bit of input should result in approx half the output bits changing, and for each spe-
cific output bit to change about half the time. It is impossible to totally characterise
avalanche for a cipher like LOKI97 as there are too may possibilities. However we
have run some random trials (with random key and data, and then flipped each
bit of data in turn). The results are as follows:

LOK197 avalanche: 640384 tests, 63.99617 mean no bits changed per test,
out bit avalanches range over 0.49830258 - 0.5021237

8 Advantages and Limitations

LOKI97 is a general block cipher, optimised for bulk data encryption applications.
However it certainly can be used in any mode which has been defined for a block
cipher, including stream modes such as CFB (CFB1 is implemented in the reference
code) or OFB; MAC modes such as CBC or any newer modes; in OFB mode as a
pseudo-random number generator; or as a hashing algorithm using CBC, CFB or
other hash modes. Note though, that since changing the key incurs an overhead of
approximately 3 data encryptions, any mode of use which treats the key as a data
input (such as some of the hashing modes) will be penalised.

Given that LOKIY7 is a general block cipher, which requires only simple integer
arithmetic and logical operations, along with table lookups for its implementation,
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there is no reason why its should not be implementable in all the environments
specified, including 8-bit processors, ATM, HDTV, B-ISDN, voice applications,
satellite applications etc. Data rates of order 1Mb/s have been demonstrated on a
pentium grade processor in software with the current code, thus any application
requiring this or a lower rate can be supported in software. Faster rates, such as
would be needed for ATM etc, would require a hardware implementation.

LOKI97 has been designed explicitly only for keysizes of 128, 192 and 256 bits,
and a datasize of 128 bits. No other combinations are supported.

LOKI97 uses mathematically designed S and P-boxes to maximise avalanche
and completeness properties for the round function. The functional specification of
the S-boxes permits a time-space efficiency tradeoff, as well as providing maximal
non-linearity.

9 Conclusions

This paper describes the design of the new LOKI97 block cipher, which has
evolved from the earlier LOKI91 design so as to use 128-bit data and 128/192/256
bit keys, with a greatly strengthened key schedule, and using a significantly more
complex round function composed of 2 S-P layers. Some discussion of the design
rationale is given, followed by the preliminary cipher analysis. It is also an AES
candidate algorithm.
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Appendix A - Log of Test Triple

The following log details the subkeys and round values computed for the sample
test triple, along with the nonlinear function f values used to compute them.

nb. the subkey values are indexed from 0 (tracking the array indices used in
the reference C and Java code) rather than 1 as was used in the description earlier.

key: 000102030405060708090A0BOCODOEOF101112131415161718191A1B1C1D1EL1F
plain: 000102030405060708090A0BOCODOEOF
cipher: 75080E359F10FE640144B35C57128DAD

makeKey(0001020304050607 ,08090A0BOCODOEOF,1011121314151617,18191A1B1C1D1E1F)

SK[0]=ECB82110452BF90A; T=ECB92313412EFFOD

SK[1]=592CD965E4168E33; t=5125D36EE81B803C

SK[2]=1A8E5818A655138C; f=0A9F4A0BB240059B

SK[3]=86E3263EBBBF339C; f=9EFA3C25A7A22D83

SK[4]=AD6DFD04A887509B; t=41D5DC14EDACA991

SK[5]=B3A56496E96B4F0D; T=EA89BDF30D7DC13E

SK[6]1=52A0073EA724A264; T=482E5F260171B1E8

SK[7]1=2FF1BF749D54136B; t=A912994A26EB20F7

SK[8]1=BDOBCO40D3A54F28; f=10663D447B221FB3

SK[9]1=929220E7076443A8; t=21374471EEOFOCA5

SK[10]=7FB7D2666220233A; t=2D17D558C504815E
SK[11]=56FE853A068B8D2E; T=790F3A4E9BDF9E45
SK[12]=AC1C43D92F7490B6; ¥=11178399FCD1DF9E
SK[13]=FBE3491706663C44; =697169F001027FEC
SK[14]=E4AC5DE7F5220AB5; f=9B1B8F819702298F
SK[15]=F10D78B02017847C; T=A7F3FD8A269C0952
SK[16]=F4FFDEBD5E175312; f=58E39D647163C3A4
SK[17]=4396B72AE367FF41; t=B875FE3DE501C305
SK[18]=26ED0O88C13C3993F; f=C241556BE6GE1938A
SK[19]=C3468074E387B643; t=324BF8C4C390323F
SK[20]=2752EDD11A129E73; t=D3AD336C4405CD61
SK[21]=A46AACF6DD57D61F; f=E7FC1BDC3E30295E
SK[22]=5FO6EB99CFD8084F; f=79EBE315DC1B9170
SK[23]=8252416503BE6B13; =4114C111E039DD50
SK[24]=EF7D17F4791630C3; f=C82FFA256304AEBO
SK[25]=B5536290E13AAD94; ¥=1139CE663C6D7B8B
SK[26]=D65073A787DCAF9A; T=8956983E4804A7D5
SK[27]=3DB329BD5B9BF213; f=BFE168D858259900
SK[28]=804E42039A6496DA; T=6F3355F7E372A619
SK[29]=DB97B9E35223D540; f=6EC4DB73B31978D4
SK[30]=B152C3DD7A6GEEO3F; ¥=6702B07AFDB24FA5
SK[31]=176EECEOF5AA3E62; T=2ADDC55DAE31CC71
SK[32]=FOB4C6DA31B841FC; t=70FA84D9ABDCD726
SK[33]=3BDDEA965A9F612D; T=E04A537508BCB46D
SK[34]=E03718A6FDC7901A; ¥=5165DB7B87A97025
SK[35]=710587AB3E6A614F; t=666B6B4BCBCO5F2D
SK[36]=BOC6F115D3ECE6C2; T=407237CFE254A73E
SK[37]=AF82DA2EF75F6924 ; t=945F30B8ADC00809
SK[38]=AA5DES8BDB42A8BDB; T=4A6AF01B49ED1BC1
SK[39]=50BB552A21F75E7D; ¥=21BED2811F9D3F32
SK[40]=B8EB467438FF42E4; t=082DB761EB13A426
SK[41]=936362030FA48C95; f=3CE1B82DFS8FBE5B1
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SK[42]=E55434C694CE74CE; T=4FO09DC7B20E4FF15
SK[43]=BDA3575166DF26BC; f=ED18027B472878C1
SK[44]=B779C086BDB9551E; f=0F9286F2854617FA
SK[45]=1322E154E6746255; ¥=80418357E9DOEECO
SK[46]=3441894738B21D3D; f=D115BD81AC7C69F3
SK[47]=F9539B20F3944405; t=44F0CC71954B62B9

blockEncrypt(000102030405060708090A0BOCODOEOF)
L[1]=0F4F8333F78E1AA5; R[1]=64CB99C8CB17F030;
L[2]=9F54249E704272D9; R[2]=627C5CB2B47B02A8;
L[3]1=722824322F44F434; R[3]=620CAAC8D2EBG65DF;
L[4]=4B9D50E9EODB36B5; R[4]=70721A7E1E9ED1FB;
L[5]=013ABC3F43356D66; R[5]=1DS8AE37EA41C6DA7;
L[6]1=522F1359A79BF164; R[6]=5413A42C303D8D5D;
L[7]1=A2539A895E13C50F; R[7]=A6CODE25F6AB614E;
L[8]=CD7DCC81D7C1A280; R[8]=BBD666242D3B8733;
L[9]1=81A3F1CO2E2E6790; R[9]=BCCO9279136E34DEA;

L[10]=D6140B31E4A3153D; R[10]=F3194A7408F52869;
L[11]=9520D52BB51C4AA4; R[11]=C108DCIF95015A77;
L[12]=6DEC4EE12EOB1CF3; R[12]=CF23C07BC2D506B7;
L[13]=2A489A4F4AEC7954; R[13]=2CE1F004CFC7122E;
L[14]=1100A7320162FD40; R[14]=8FE94D86A97297D4;
L[15]=2CB742D3FBFA61C0O; R[15]=F4CE36E67D09E753;
L[16]=0144B35C57128DAD; R[16]=75080E359F10FE64;

= 75080E359F10FE640144B35C57128DAD

blockDecrypt(75080E359F10FE640144B35C57128DAD)
L[1]=F4CE36E67D0O9E753; R[1]=2CB742D3FBFA61CO;
L[2]=8FE94D86A97297D4; R[2]=1100A7320162FD40;
L[3]1=2CE1F004CFC7122E; R[3]=2A489A4F4AEC7954;
L[4]=CF23C07BC2D506B7; R[4]=6DEC4EE12EOB1CF3;
L[5]=C108DCI9F95015A77; R[5]=9520D52BB51C4AA4;
L[6]=F3194A7408F52869; R[6]=D6140B31E4A3153D;
L[7]=BCC9279136E34DEA; R[7]=81A3F1CO2E2E6790;
L[8]1=BBD666242D3B8733; R[8]=CD7DCC81D7C1A280;
L[9]1=A6CODE25F6AB614E; R[9]=A2539A895E13C50F;

L[10]=5413A42C303D8D5D; R[10]=522F1359A79BF164;
L[11]=1DSAE37EA41C6DA7; R[11]=013ABC3F43356D66;
L[12]=70721A7E1E9ED1FB; R[12]=4B9D50E9EODB36B5;
L[13]=620CAACSD2EB65DF; R[13]=722824322F44F434;

F(SK(1))=64CA9BCBCF12F637

F(SK(4))=6D33DF8143F5180D

F(SK(7))=FD588E56A2A91706

F(SK(10))=025A3E4C31DA25CF
F(SK(13))=5617B39744C75B12
F(SK(16))=552918137308E03B
F(SK(19))=F4EFCD7C5130902A
F(SK(22))=1985FCAD7328423C
F(SK(25))=71B4EB10E122EF6A
F(SK(28))=72BABBB426DB4FF9
F(SK(31))=171CD7AE71A24F4A
F(SK(34))=5A03155077C94C13
F(SK(37))=410DBEE5E1CCOEDD
F(SK(40))=A5A1D7COE39EEES0
F(SK(43))=E5CE91D47C6B1A13
F(SK(46))=59BF4CE664EAIFA4

F(SK(46))=59BF4CE664EA9FA4
F(SK(43))=E5CE91D47C6B1A13
F(SK(40))=A5A1D7COE39EEES0
F(SK(37))=410DBEE5E1CCOEDD
F(SK(34))=5A03155077C94C13
F(SK(31))=171CD7AE71A24F4A
F(SK(28))=72BABBB426DB4FF9
F(SK(25))=71B4EB10E122EF6A
F(SK(22))=1985FCAD7328423C
F(SK(19))=F4EFCD7C5130902A
F(SK(16))=552918137308E03B
F(SK(13))=5617B39744C75B12
F(SK(10))=025A3E4C31DA25CF

L[14]=627C5CB2B47B02A8; R[14]=9F54249E704272D9; F(SK(7))=FD588E56A2A91706
L[15]=64CB99C8CB17F030; R[15]=0F4F8333F78E1AA5; F(SK(4))=6D33DF8143F5180D
L[16]=08090A0BOCODOEOF; R[16]=0001020304050607; F(SK(1))=64CA9BCBCF12F637

= 000102030405060708090A0BOCODOEOF
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