
The MAGENTA Block Cipher Algorithm

M.J. Jacobson, Jr.�and K. Hubery

Deutsche Telekom AG
Am Kavalleriesand 3
64295 Darmstadt
GERMANY

June 8, 1998

Contents

1 Introduction 2

2 The MAGENTA Algorithm 2

3 Computational E�ciency 3

4 Algebraic Properties 5
4.1 The Function f(x) . 5
4.2 The Function PE(x; y) . 6
4.3 Two Successive Combinations of � . 6
4.4 The Function T . 7
4.5 The Function E(3) . 7
4.6 The MAGENTA Algorithm . 8

5 Avalanche Properties 8
5.1 The Function f(x) . 8
5.2 The Function PE(x; y) . 8
5.3 The Function E(3) . 9
5.4 The MAGENTA Algorithm . 10

6 Statistical Tests 10

7 Di�erential Cryptanalysis 12

8 Linear Cryptanalysis 13

9 Palindrome Properties 14

10 Conclusions 14

A Assembler Code 16

�jacobs@cdc.informatik.tu-darmstadt.de
yhuber@tzd.telekom.de

1

1 Introduction

The development of MAGENTA (Multifunctional Algorithm for General-purpose Encryption and Network
Telecommunication) began in 1990, with the basic design principles explained in the unpublished paper
[7]. The idea was to apply simple and transparent techniques (no magic tables or constants) which can be
e�ciently implemented in both software and hardware. Originally, this was realized by using a butter
y
structure to accomplish di�usion and discrete exponentiation in a �nite �eld for confusion.

In the following years, the idea of hardware realizations was investigated more closely. In cooperation
with hardware specialist S. Wolter the butter
y structure of the original proposal was switched to the FHT
shu�e structure, which has the advantage of giving identical structures at each stage. Further slight changes
to the algorithm occurred when an analysis of the algorithm done by specialists of the company SIT [5] was
carried out in 1994.

Plans were to develop a chip which would be capable of operating up to the gigabit/sec range (see
[8]). It was envisioned to use such chips for encryption of ATM connections. Unfortunately the hardware
realization did not proceed as planned since the need for such encryption is not yet widely appreciated,
although investigations have shown that it should be possible to achieve [8].

Currently, the MAGENTA algorithm is used within Deutsche Telekom for securing sensitive management
data. In addition, a VHDL design and a FPGA (Field Programmable Gate Array) realization are in progress.

There are two schemes to mention which essentially used structures of the fast Fourier Transform for
cryptographic purposes prior to the MAGENTA algorithm. The �rst is an invention of Jean Pierre Vaseur
[19] which was �led on 2nd June 1959. The second is the so-called Comp-128 algorithm which is used by
some GSM providers. The Comp-128 algorithm was designed at the end of the eighties, and was recently
disclosed through the Internet.

In the next section, we describe the MAGENTA algorithm in detail. As mentioned above, the security
of MAGENTA has been analyzed in great detail on behalf of Deutsche Telekom by SIT GmbH for use with
128-bit keys. In Sections 4 to 9, we highlight the details of the internal report based on this analysis [5] and
extend the analysis to 192 and 256 bit keys where appropriate.

2 The MAGENTA Algorithm

Let B = f0; 1g8 be the set of all 8-bit binary vectors (bytes). For x 2 B; we will write x = (x7; x6; : : : ; x0);
and we associate each byte with an integer in f0; 1; : : : ; 255g via the formula (x7; x6; : : : ; x0) 7! 27x7+26x6+
: : :+ x0: The operator � will denote bitwise addition modulo 2; i.e., the usual bitwise XOR operation.

The heart of the MAGENTA algorithm is based on the Fast Hadamard Transform (FHT) [10]. However,
we replace the addition and subtraction at each node in the shu�e structure by the following non-linear
operation. Let � be a primitive element of the �eld GF (256) with generating polynomial p(x) = X8+X6+
X5 +X2 + 1 and p(�) = 0: For all x 2 B; de�ne

f(x) =

�
�x x 6= 255
0 x = 255 :

(1)

Then, for all (x; y) 2 B2 we de�ne
A(x; y) = f (x� f(y)) (2)

and
PE(x; y) = (A(x; y); A(y; x)) = (f(x� f(y)); f(y � f(x))) : (3)

For all (x0; : : : ; x15) 2 B16; our modi�cation of the FHT is given by

T (x0; : : : ; x15) = �(�(�(�(x0 ; : : : ; x15)))); (4)

where �(x0; : : : ; x15) is de�ned as

�(x0; : : : ; x15) = (PE(x0; x8); PE(x1; x9); : : : ; PE(x7; x15)) : (5)

2

The function T (x0; : : : ; x15) operates on a single 128-bit parameter and returns a 128-bit output. Clearly,
this operation is very quick, since it can be implemented entirely with bit operations.

For all X = (x0; : : : ; x15) 2 B16; de�ne

Xe = (x0; x2; : : : ; x14)

and
Xo = (x1; x3; : : : ; x15);

i.e., Xe consists of the bytes of X with even index and Xo consists of the bytes of X with odd index. The
function C consists of repeated applications of our FHT variant, and is recursively de�ned for j � 1 and all
(x0; : : : ; x15) by

C(j+1)(x0; : : : ; x15) = T
�
(x0; : : : ; x7)� C(j)

e ; (x8; : : : ; x15)� C(j)
o

�
(6)

where the initial value C(1) = T (x0; : : : ; x15): For a �xed number of rounds r; we de�ne

E(r)(x0; : : : ; x15) = C(r)
e : (7)

Originally, MAGENTA was designed with r = 7: However, during analysis by SIT GmbH [5, Appendix] it
was discovered that using r = 7 made a chosen plaintext attack possible. It was recommended that the
number of rounds be reduced to 3; and the analysis in the following chapters shows that to the best of our
knowledge this choice does not result in any signi�cant cryptographic weaknesses of the overall block cipher.
Therefore, we �x r = 3:

The complete MAGENTA block cipher makes use of the well-known Feistel construction [3] using the
function E(3) as the basic cyryptomodule. For x = (x0; : : : ; x15) 2 B16 and y = (y0; : : : ; y7) 2 B8; one
\Feistel-round" is de�ned as

Fy(x) =
�
(x8; : : : ; x15); (x0; : : : ; x7)�E(3)(x8; : : : ; x15; y0; : : : ; y7)

�
: (8)

Let M = (x0; : : : ; x15) 2 B16 be one plaintext block (128 bits). The MAGENTA algorithm supports the
following three key sizes:

128 bit: K = (K1;K2);
192 bit: K = (K1;K2;K3);
256 bit: K = (K1;K2;K3;K4);

where K1 = (y0; : : : ; y7); K2 = (y8; : : : ; y15); K3 = (y16; : : : ; y23); and K4 = (y24; : : : ; y31): The MAGENTA
algorithm makes use of six or eight Feistel rounds, where each round uses a di�erent part of the key. The
algorithm is given by

EncK(M) =

8<
:

FK1
(FK1

(FK2
(FK2

(FK1
(FK1

(M)))))) if K = (K1K2) 2 B16

FK1
(FK2

(FK3
(FK3

(FK2
(FK1

(M)))))) if K = (K1K2K3) 2 B24

FK1
(FK2

(FK3
(FK4

(FK4
(FK3

(FK2
(FK1

(M)))))))) if K = (K1K2K3K4) 2 B32
: (9)

Due to a palindromic property of Equation 9 given in Section 9, the decryption function can easily be
expressed in terms of the encryption function by

DecK(M) = V (EncK(V (M))) ; (10)

where V (x0; : : : ; x15) = (x8; x9; : : : ; x15; x0; x1; : : : ; x7):

3 Computational E�ciency

In this section, we give estimates of the number of clock cycles required to perform �ve basic operations of
the MAGENTA algorithm on two architectures, an Intel Pentium Pro processor running at 200 MHz and
the Z80 microprocessor, a typical 8-bit processor. In particular, we consider the following operations:

3

� set up a key,

� change a key,

� initialize the algorithm,

� encrypt one 128-bit block in ECB mode,

� decrypt one 128-bit block in ECB mode.

We analyze all three key sizes supported by MAGENTA, namely 128; 192; and 256 bits.
In order to obtain e�ciency estimates on a Pentium Pro processor, we computed the run times in seconds

required to perform each of the �ve operations 106 times on a given random key-plaintext pair using our
optimized C implementation. These run times were then normalized to obtain an approximation of the
number of clock cycles required for one iteration by dividing by 106 (the total number of iterations) and
multiplying by the number of cycles per second (2 � 108). The results of these calculations are in Table 1.

Operation 128-bit 192-bit 256-bit
Key Setup 2044 3094 4308

Change Key 2044 3094 4308
Alg. Init 2320 2320 2320

Encrypt Block 23694 23694 31550
Decrypt Block 23884 23884 31744

Table 1: E�ciency estimates (in clock cycles) for 200MHz Pentium Pro

Note that in MAGENTA, key setup and changing a key are the same operation. Furthermore, the
initialization of the algorithm consists of computing a table of values of the function f; i.e., a table containing
256 bytes. This initialization need only be performed once per session, or not at all if an array representing
f is implemented as a constant.

For computing estimated clock cycle requirements on a Z80 processor, we use the architecture and
instruction set speci�ed in [20]. We have written rough assembler programs for parts of MAGENTA using
this instruction set, based on an optimized C implementation. These programs have never been tested or
even run on a computer, so our clock cycle counts should be considered only as estimates. Samples of this
assembler code can be found in Appendix A. The clock cycle estimates are located in Table 2.

One frequently occurring operation in MAGENTA is copying 8-byte and 16-byte blocks of memory. Z80
assembler code for this can be found in Appendix A. According to the cycle requirements per instruction
given in [20], this operation (as we have written it) requires 72 cycles for 8-byte blocks and 136 cycles for
16-byte blocks.

If we assume that the key input is given to us as raw byte data, then setting up the key consists of
recording the size of the key and copying either 2; 3; or 4 8-byte data blocks, depending on the key size.
Assembler code for this is given in Appendix A. According to the cycles per instruction in [20], this requires
157; 234; or 306 cycles for 128; 192; and 256-bit keys respectively. Again, changing a key is the same operation
as setting a key up. It should be noted that the clock cycle requirements we have computed for key setup
on a Pentium Pro are higher because the C implementation we used includes overhead for converting the
ASCII character representation of the key to raw byte format.

Assembler code for initializing the algorithm (i.e., computing a table of values representing the function f)
is given in Appendix A. According to the cycles per instruction in [20], this operation takes 3582 clock cycles.
However, as stated above, this table should be implemented as a constant in an actual implementation, so
this computation should usually not be necessary.

The function � (Equation 5) requires 672 clock cycles according to the instruction set in [20] and our
assembler code in Appendix A. The function T (Equation 4) consists of four consecutive applications of
PI; and hence requires 2688 clock cycles. During one Feistel round (Equation 8), T is executed three times.
In addition, based on our optimized C implementation, two 8-byte and two 16-bytes memory transfers are

4

required, as well as two iterations of simple computations requiring 144 and 188 cycles each per iteration
(computing Xe and Xo and computing the XOR of two 16-byte blocks) and one iteration of a block requiring
108 cycles (computing the last 8-byte block XOR sum). Hence, one complete Feistel round requires 9249
clock cycles. One encryption of a 128-bit block in ECB mode requires six Feistel rounds for 128 and 192-
bit keys and eight Feistel rounds for 256-bit keys, plus one 16-byte memory copy (copying the plaintext
block). In total, 55630 clock cycles are required to encrypt one block using 128 and 192-bit keys, and 74128
clock cycles for 256-bit keys. The decrypt operation is almost identical, except we also need to compute
the function V (x0; : : : ; x15) = (x8; x9; : : : ; x15; x0; x1; : : : ; x7) twice, which costs an additional four 8-byte
memory copies, resulting in 55918 clock cycles for 128 and 192-bit keys, and 74416 clock cycles for 256-bit
keys.

Operation 128-bit 192-bit 256-bit
Key Setup 157 234 306

Change Key 157 234 306
Alg. Init 3582 3582 3582

Encrypt Block 55630 55630 74128
Decrypt Block 55918 55918 74416

Table 2: E�ciency estimates (in clock cycles) for 8-bit processor

4 Algebraic Properties

4.1 The Function f(x)

During one application of the MAGENTA algorithm, the function f(x) (Equation 1) is executed a total of
2304 times for 128 and 192-bit keys and 3072 times for 256-bit keys. Since this function is the non-linear
building block of the algorithm, it has special importance in any analysis of the entire algorithm. The
following properties of f are known:

1. It is one-to-one, i.e., it is a permutation over the set B:

2. This permutation can be represented as a product of 6 disjoint cycles of lengths 198; 38; 9; 5; 5; and
1: With regards to combinatorial analysis [17], these values are \normal" | there is no signi�cant
deviation from the cycle representations of randomly generated permutations. The single �xed point
is the number 161:

3. Considering bytes as integers (via the map (x7; x6; : : : ; x0) 7! 27x7 + 26x6 + : : : + x0), for all x 2 B
such that f(x) 2 f1; 2; : : : ; 127g we have

f(x+ 1) = 2 � f(x) (mod 255);

where by � we denote multiplication over the integers. For all (x; y) 2 B2 such that f(x) � f(y) 2
f1; 2; : : : ; 255g; we can generalize this property by

f((x+ y) (mod 255)) = f(x) � f(y) :
These relatively strong properties do not seem to have any negative cryptographic e�ects on the overall
security of the algorithm.

4. If we consider f(x) as a vector function of the form f(x) = (f7(x); f6(x); : : : ; f0(x)); then each of
the eight Boolean functions f0; : : : ; f7 is non-linear with degree 7: Also, all possible non-trivial XOR-
combinations of these functions are non-linear. In [5], these functions are explicitly given in algebraic
normal form (Shegalkin polynomials). One interesting property is that each function has exactly 128
summands. No other special properties of these functions (symmetry properties, etc.) were found.

5

4.2 The Function PE(x; y)

The function PE (Equation 3) has two striking properties:

1. For (x; y) 2 B2; de�ne v(x; y) = (y; x): Then, PE(x; y) has the following symmetry property:

v(PE(x; y)) = PE(v(x; y)); (11)

which can simplify certain analyses.

2. PE(x; y) is not one-to-one. There are

24235 elements in B2 with no pre-image
23952 elements in B2 with exactly one pre-image
12028 elements in B2 with exactly two pre-images
4079 elements in B2 with exactly three pre-images
1007 elements in B2 with exactly four pre-images
172 elements in B2 with exactly �ve pre-images
47 elements in B2 with exactly six pre-images
11 elements in B2 with exactly seven pre-images
3 elements in B2 with exactly eight pre-images
1 elements in B2 with exactly nine pre-images
1 elements in B2 with exactly eleven pre-images.

The element (236; 236) has 9 pre-images, namely (18; 18); (38; 141); (67; 205); (141; 38); (146; 146);
(205; 67); (213; 224); (224; 213); (236; 236): The element (256; 256) is a �xed point of PE: The ele-
ment (227; 227) has 11 pre-images, namely (17; 111); (28; 255); (55; 55); (104; 186); (111; 17); (126; 126);
(166; 166); (173; 173); (186; 104); (197; 197); (255; 28):

The fact that PE is not one-to-one implies that it is potentially easier to construct collisions if MAGENTA
is used as a hash function. In addition, it also implies that the images of the function E(3) can occur with
unequally distributed frequencies. On the other hand, it is possible that this may increase the di�culty of
inverting E(3):

4.3 Two Successive Combinations of �

The function T consists of 4 successive applications of �: Two successive combinations of �; i.e., the function
�(�(x0; : : : ; x15)) consists of four independent PE-combinations. Each of these combinations has four input
bytes (x0; x1; x2; x3) and transforms them into four output bytes (y0; y1; y2; y3) as follows:

y0 = f (f(x0 � f(x1))� f(f(x2 � f(x3))))

y1 = f (f(x2 � f(x3))� f(f(x0 � f(x1))))

y2 = f (f(x1 � f(x0))� f(f(x3 � f(x2))))

y3 = f (f(x3 � f(x2))� f(f(x1 � f(x0))))

As a direct consequence of the properties of PE we have:

1. This function has the following symmetry properties:

(a) The permutation � : (x0; x1; x2; x3) ! (x2; x3; x0; x1) on the pre-image implies the permutation
� : (y0; y1; y2; y3)! (y1; y0; y3; y2) on the image.

(b) The permutation �0 : (x0; x1; x2; x3) ! (x1; x0; x3; x2) on the pre-image implies the permutation
�0 : (y0; y1; y2; y3)! (y2; y3; y0; y1) on the image.

(c) The permutation �00 : (x0; x1; x2; x3)! (x3; x2; x1; x0) on the pre-image implies the permutation
�00 : (y0; y1; y2; y3)! (y3; y2; y1; y0) on the image.

6

2. This function is not one-to-one. At least 2 � 24235 � 216 � 242352 = 2589194695 elements of B4 (more
than 60 percent) have no pre-image. There is at least one element in B4 with 112 = 121 or more
pre-images. In particular, the element (193; 193; 193; 193) has 201 pre-images.

The unequal occurrences of elements in B4 as images leads one to ask how much this is re
ected in the
function E(3): The frequencies of the image components y0 and y2 were determined with respect to all 232

possible pre-images. The variation of the frequencies around the average 65536 was relatively small. The
smallest value was 64393 for (82; 98) and the largest was 67130 for (41; 41):

4.4 The Function T

The shu�e structure of the function T (Equation 4) also exhibits some symmetry. In conjunction with the
symmetry properties of PE; one can show that for all (x0; : : : ; x15) 2 B16

V̂ (T (x0; : : : ; x15)) = T (V̂ (x0; : : : ; x15))

where
V̂ (x0; : : : ; x15) = (x15; : : : ; x0) :

Generalizations of this easily lead to further properties of T:
From the fact the PE is not one-to-one, it is easy to see that T is not one-to-one either. Since PE is

applied 32 times during one application of T; one expects that the image of T is considerably smaller than
B16: In fact, it follows from the results of the previous subsection that at least 97:4 percent of all elements
in B16 have no pre-image with respect to T: On the other hand, the element (220; 220; : : : ; 220) has at least
2014 > 1:6� 109 pre-images.

The fact that T is so clearly not one-to-one can have a negative e�ect on the confusion and di�usion prop-
erties of the overall cipher. However, the following property helps rectify the situation. For all (x0; : : : ; x15);
for all c 2 Bnf0g; and for all i 2 f0; : : : ; 15g; if

(y0; : : : ; y15) = T (x0; : : : ; x15)

and
(y00; : : : ; y

0
15) = T (x0; : : : ; xi�1; xi � c; xi+1; : : : ; x15)

then for all j 2 f0; : : : ; 15g yj 6= y0j : This property provides us with an essential fact guaranteeing crypto-

graphic properties of the function E(3) as well as the overall cipher. At the same time, it follows that the
function T assumes all 256 possible byte-components if all 25616 pre-images are applied.

4.5 The Function E(3)

The function E(3) (Equation 7) has the following symmetry properties. Let x ^ y denote bit-wise AND.
Then, for all (x0; : : : ; x15) 2 B16

1. If x0 = x1 = : : : = x15; then for E(3)(x0; : : : ; x15) = (y0; : : : ; y7) it follows that y0 = y1 = : : : = y7: For
example, E(3)(102; : : : ; 102) = (0; : : : ; 0):

2. If x0 = x1 = : : : = x7 and x8 = x9 = : : : = x15; then for E(3)(x0; : : : ; x15) = (y0; : : : ; y7) it follows that
y0 = y4 ^ y1 = y5 ^ y2 = y6 ^ y3 = y7:

3. If x0 = x1 = x2 = x3 = x8 = x9 = x10 = x11 and x4 = x5 = x6 = x7 = x12 = x13 = x14 = x15 then for
E(3)(x0; : : : ; x15) = (y0; : : : ; y7) it follows that y0 = y2 ^ y1 = y3 ^ y4 = y6 ^ y5 = y7:

4. If x0 = x1 = x4 = x5 = x8 = x9 = x12 = x13 and x2 = x3 = x6 = x7 = x10 = x11 = x14 = x15 then for
E(3)(x0; : : : ; x15) = (y0; : : : ; y7) it follows that y0 = y1 ^ y2 = y3 ^ y4 = y5 ^ y6 = y7:

A possible cryptographic e�ect of these properties is that for certain keys and highly structured plaintexts
(with many identical bytes) the corresponding ciphertext may exhibit structural properties. In this respect,
one can designate keys with many identical bytes as \weak keys." However, the probability that such a weak
key is generated randomly is su�ciently small.

7

4.6 The MAGENTA Algorithm

An essential requirement for the suitability of (Equation 9) as a cipher is ful�lled due to the fact that for all
K 2 B16; B24; and B32; and all M 2 B16; the function EncK(M) is a one-to-one function B16 ! B16: This
fact follows from the easily demonstrated fact that Fy(x) (Equation 8) is also one-to-one.

Further algebraic properties of EncK(M) are given in Section 9.

5 Avalanche Properties

An important design criterium for any block cipher is the \Avalanche E�ect" | by modifying one input
bit on average one half of the output bits should change. This should ensure that the relationship of the
plaintext to the ciphertext and respectively the key to the ciphertext is as irregular as possible, i.e., the
ciphertext should seem random and not exhibit any structural dependencies on the plaintext or the key.

The Avalanche E�ect is also important in the context of hash functions. The smallest modi�cation of
the text should result in considerable modi�cations to the hash value with high probability.

In the following we describe the results of tests [5], where several of the functions involved in the MA-
GENTA algorithm were tested as to whether they ful�ll one of the strictest avalanche criteria [4]. This
criteria is satis�ed if the modi�cation of one input bit causes each output bit to change with probability
\close" to 1=2: Signi�cance levels were computed for these probabilities and �2-tests were applied in order
to have a precise test. A short presentation of the tests can be found in [6].

During the course of each test an n � n matrix A = (ai;j); 0 � i; j < n was generated, where n is the
number of input bits and the number of output bits of the function being tested. We call A the dependency
matrix. For speci�c i and j; ai;j is the number of changes of bit i in the image vector when bit j ofm randomly
selected pre-image vectors is changed. One can consider each ai;j as the sum of m random variables Ai;j with
0� 1 distribution. If each of these is binomially distributed with parameter 0:5; then with high probability
the value of each ai;j should lie between (m� 3

p
m)=2 and (m+ 3

p
m)=2; the so-called 3� range.

The following hypothesis was tested:

Hypothesis 1 (H0) The function under consideration ful�lls the strict avalanche criterium (SAC) | for
all i; j 2 f0; : : : ; n� 1g

P (Ai;j = 1) � 1

2
holds.

A �2-test was constructed with help of the dependency matrix with test size

�2 = 2
X

0�i<n;0�j<n

�
m
2 � ai;j

�2
m
2

:

A �2-distribution with n2 degrees of freedom was used. For large n (larger than 10) it is approximately
normally distributed with N(n2; 2n2):

5.1 The Function f(x)

Since this function only has 8 input and output bits, the exact probabilities can be computed relatively easily.
All the probabilities lie between 0:453 and 0:532; and are clearly within the previously computed interval
bounds 0:406 and 0:594: Although there are probably functions for which the corresponding probabilities are
closer to 0:5; the results show that there is no reason to modify f: These results also show that every input
bit a�ects every output bit in a non-linear manner [4].

5.2 The Function PE(x; y)

The exact probabilities for PE can also be computed exactly, since it only has 16 input and output bits. All
the probabilities also lie between 0:453 and 0:532: However, the interval bounds here are 0:494 and 0:506;
and the average deviation from 0:5 seems to be too large here. In the following �2-test the test bounds were
exceeded. As a result, the analysis of the avalanche properties of E(3) was conducted in more depth.

8

5.3 The Function E(3)

Due to the previously described role of E(3) in MAGENTA, it seems practical to �x half of the input bits
and analyze the e�ects of bit modi�cations in the other half for each of the avalanche tests. Depending on
which half of the input bits is �xed, one can refer to \plaintext-ciphertext avalanche" or \key-ciphertext
avalanche" [6].

Plaintext-Ciphertext Avalanche

We �x the bytes (x8; : : : ; x15) and analyze the dependence of the 64 image bits on the 64 bits in (x0; : : : ; x7):
As a spot check, the number of times that each output bit di�ered by 1 was counted for each of 25000
input pairs that di�er in exactly one bit. In this manner, estimations of the investigated probabilities (up
to normalization) were obtained. The 64 � 64 values were then subjected to a �2 test.

As �xed values of (x8; : : : ; x15) the following 12 \keys" were used:

� (0; 0; 0; 0; 0; 0; 0; 0)

� (18; 18; 18; 18; 18; 18; 18; 18)

� (255; 255; 255; 255; 255; 255; 255; 255)

� (171; 171; 171; 171; 205; 205; 205; 205)

� (121; 121; 228; 228; 121; 121; 228; 228)

� (1; 35; 1; 35; 1; 35; 1; 35)

� (212; 236; 144; 246; 118; 168; 92; 66)

� (201; 40; 143; 18; 198; 39; 83; 159)

� (1; 35; 69; 103; 137; 171; 205; 239)

� (254; 220; 186; 152; 118; 84; 50; 16)

� (26; 43; 60; 77; 94; 111; 112; 129)

� (146; 163; 180; 197; 214; 231; 248; 9)

For all keys the �2 test values were between 3976 and 4183; hence in the acceptable range for the �2-
distribution with 4096 degrees of freedom and 5 percent signi�cance level (approximately 4245). The nu-
merical values were almost all between 12250 and 12750: Hence, one can conclude that the strict avalanche
criterium [4] is satis�ed.

Key-Ciphertext Avalanche

We �x the bytes (x0; : : : ; x7) and analyze the e�ect of the remaining 8 bytes (the key bytes) on the output.
Any regular properties exhibited here could be used to simplify attempts at key reconstruction.

As before, the number of times that each output bit di�ered by 1 was counted for each of 25000 input
pairs that di�er in exactly one bit. The same 12 vectors as above were also used here as �xed byte vectors.

For each of the 12 �xed byte vectors the �2 test values were between 4043 and 4242; hence within the
acceptable range. The numerical values were almost all between 12250 and 12750: As a result, this test gives
no indications of any weaknesses of E(3) with respect to the strict avalanche criterium.

9

5.4 The MAGENTA Algorithm

Plaintext-Ciphertext Avalanche

For each of 10000 plaintext pairs that di�er in exactly one bit, the number of times that each output bit
di�ered by 1 was counted. In this manner, estimations of the investigated probabilities (up to normalization)
were obtained. The 128 � 128 values were then subjected to a �2 test.

The following 9 vectors were used as �xed key values:

� (0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0)

� (18; 18; 18; 18; 18; 18; 18; 18; 18; 18; 18; 18; 18; 18; 18; 18)

� (255; 255; 255; 255; 255; 255; 255; 255; 255; 255; 255; 255; 255; 255; 255; 255)

� (171; 171; 171; 171; 205; 205; 205; 205; 205; 205; 205; 205; 171; 171; 171; 171)

� (121; 121; 228; 228; 121; 121; 228; 228; 121; 121; 228; 228; 121; 121; 228; 228)

� (1; 35; 1; 35; 1; 35; 1; 35; 69; 69; 69; 69; 69; 69; 69; 69)

� (212; 236; 144; 236; 118; 168; 92; 66; 201; 40; 143; 18; 198; 39; 83; 159)

� (1; 35; 69; 103; 137; 171; 205; 239; 254; 220; 186; 152; 118; 84; 50; 16)

� (26; 43; 60; 77; 94; 111; 112; 129; 146; 163; 180; 197; 214; 231; 248; 9)

For all keys the �2 test values were between 16204 and 16668; hence in the acceptable range for the �2-
distribution with 16384 degrees of freedom and 5 percent signi�cance level (approximately 16683). The
numerical values were almost all between 4850 and 5150: Hence, one can conclude that the strict avalanche
criterium [4] is satis�ed.

Key-Ciphertext Avalanche

We �x the plaintext bytes and analyze the e�ect of the key components on the resulting ciphertext. As
above, the number of times that each output bit di�ered by 1 was counted for each of 10000 key pairs that
di�er in exactly one bit. The same 9 vectors used above were used as �xed plaintexts.

For each of the 9 �xed plaintexts the �2 test values were between 16144 and 16572; hence within the
acceptable range for a 5 percent signi�cance level. The numerical values were almost all between 4850 and
5150: Hence, these tests do not show any signi�cant weaknesses in the MAGENTA algorithm with respect
to the strict avalanche criterium.

6 Statistical Tests

In this section we describe a number of statistical tests that were applied to the MAGENTA algorithm, as
well as their evaluation [5]. As a starting point the tests in [6] were used, since these tests allow one to
compare the results to those of several other block ciphers.

For �xed keys, the following properties were tested:

1. the XOR-sums from 10000 randomly chosen plaintext blocks (x0; : : : ; x15) with the corresponding
ciphertext blocks (Test series 1),

2. the ciphertexts for all 16514 plaintext blocks (x0; : : : ; x15) in which at least 126 bits are 0; and respec-
tively at least 126 bits are 1 (Test series 2).

In each test series segments of 128 bits were analyzed according to the following criteria (for a more exact
description, see [6]):

1. frequencies of zeros and ones,

10

2. frequencies of the bigrams 00; 01; 10; and 11;

3. number of subsegments consisting of equal bits in relation to the frequencies of zeros and ones,

4. number of distinct subsegments (\patterns"),

5. frequency of ones in the binary derivative.

Up to and including the fourth test, two di�erent signi�cance levels (up to 5 percent) were applied to each
test, resulting in 9 tests for each 128-bit block. The adaptation of the test statistics from 64 to 128 bits
causes di�culties in computing exact test boundaries and threshold values. Hence, the analysis is based on
test values from randomly generated 128-bit segments.

Test Results

Both test series were conducted with the 9 keys from Section 5.4. The analysis was based on the subset of
tested 128-bit blocks that did not ful�ll the speci�ed test criterium.

In the �rst test series, the deviation of the values corresponding to the investigated subset from the
previously computed values was insigni�cant. Hence, we found no statistical dependences between the
plaintext bytes and the corresponding ciphertexts.

Key Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9
1 2.67 0.62 5.33 1.14 4.08 0.84 4.66 4.64 1.06
2 2.51 0.54 4.99 1.02 3.91 0.73 4.70 4.75 1.06
3 2.56 0.52 5.04 0.93 4.17 0.69 4.36 4.63 1.17
4 2.53 0.54 5.12 1.00 4.29 0.74 5.08 4.86 1.00
5 2.43 0.50 5.08 1.01 4.07 0.83 4.95 4.64 0.86
6 2.94 0.61 5.23 1.01 4.07 0.66 5.26 4.50 0.93
7 2.79 0.61 4.97 1.00 3.91 0.72 4.72 4.51 0.98
8 2.26 0.49 4.65 0.88 4.02 0.66 4.95 4.46 1.08
9 2.57 0.58 4.77 1.02 4.03 0.73 4.65 4.56 0.96

For the sake of comparison, we give here the evaluation results for 4 equal sized sets of randomly generated
128-bit blocks:

Set Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9
1 2.68 0.61 5.14 1.17 4.28 0.78 4.51 4.53 0.98
2 2.90 0.59 5.31 1.05 3.79 0.70 4.76 4.69 1.10
3 2.82 0.49 5.04 0.82 3.74 0.64 4.90 4.69 1.09
4 2.70 0.61 5.24 1.03 4.03 0.81 4.82 4.73 1.03

The analysis of the second test series resulted in a similar picture to that of the �rst test series. With
respect to the test criteria, the set of computed ciphertext blocks was indistinguishable from equally sized
sets of randomly generated blocks, even though the plaintext was very structured.

Key Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9
1 2.75 0.66 5.40 0.93 3.92 0.81 4.56 4.61 0.98
2 2.58 0.56 4.96 0.97 3.90 0.65 5.01 4.63 1.02
3 2.68 0.69 4.93 1.01 3.71 0.67 4.90 4.77 0.95
4 2.73 0.57 5.04 1.02 3.76 0.70 5.08 4.57 1.05
5 2.71 0.59 4.75 0.88 3.74 0.62 4.52 4.56 1.01
6 2.51 0.57 5.23 1.14 4.05 0.78 4.71 4.54 0.91
7 2.80 0.70 4.99 0.95 3.81 0.70 4.71 4.73 1.01
8 2.53 0.54 4.97 1.00 4.06 0.75 4.81 4.80 1.04
9 2.77 0.58 4.97 0.99 3.98 0.66 4.72 4.56 0.95

A visual examination of the data for both test series does not reveal any abnormalities, even for the
zero key. Therefore, we conclude that these tests have revealed no statistical weaknesses of the MAGENTA
algorithm.

11

7 Di�erential Cryptanalysis

Di�erential cryptanalysis consists of methods and techniques for recovering keys used for rounds in block
ciphers. Statements about single round keys (usually the last round) are derived based on ciphertext pairs
whose corresponding plaintexts have the same pre-selected di�erence, i.e., this is a chosen-plaintext attack.
In general, these methods are constructed by analyzing the e�ects of plaintext di�erences from round to
round. In [2], this technique is described in detail with respect to the DES algorithm.

In general, extensive analysis of the round functions is required in order to �nd the most e�ective method.
In [2], the XOR-tables (the S-Boxes) are used for this purpose. From these tables, statements about the
probability of the transition of one di�erence to the next are derived. These probabilities have considerable
in
uence on how many ciphertext pairs are necessary for a successful attack.

Since then, di�erential cryptanalysis methods have been applied to several block ciphers and hash func-
tions [4]. It appears that at least part of the MAGENTA algorithm can be analyzed with these methods. In
the following, we will consider especially the function E(3):

Similarly to the S-box XOR-tables in [2], the complete XOR-tables for the function f have been computed.
In other words, for each pair (pre-image di�erence, image di�erence), the number of pre-image pairs from
B2 with the speci�ed di�erence whose image pair from B2 has the speci�ed image di�erence was counted.
By \di�erence" we mean the XOR-sum [2]. This concept of di�erence is natural, since in the cipher many
XOR combinations are applied.

The XOR-table for the function f has 256 rows and 256 columns. The sum of every row and ever column
is equal to 256: The table entries are all integers. The �rst row, which corresponds to the pre-image di�erence
0; contains exactly one entry of 256 (image di�erence 0) and all other entries are 0: Similarly, the �rst column,
which corresponds to the image di�erence 0; contains exactly one entry of 256 (pre-image di�erence 0; and
0 elsewhere (due to the fact that f is one-to-one). Especially large values (except in the �rst row) are of
special interest in di�erential cryptanalysis. The largest value in the table was 8; and it occurred for the
following di�erence pairs:

pre-image image
di�erence di�erence
51 35; 66; 154; 155; 250
102 111; 114; 232; 233; 244
153 96; 97; 115; 229; 247
204 18; 19; 38; 207; 251

The rest of the table entries are 0; 2; 4; and 6: The maximal \transition probability" for non-zero di�erences
is 8=256 = 2�5: Therefore, one must �x the transition probability in every level of the map T no higher than
2�5; because every pre-image byte runs through f at least once.

In order to get a better understanding of the possibilities for making combinations of the function PE,
the largest entries of the XOR-table of the map PE have also been determined. The largest entry outside
the �rst row was 36 for the pre-image di�erence (234; 234) and image di�erence (0; 0): On this basis, one
obtains as an upper bound for the transition probability within one level (for non-zero pre-image di�erences)
the value 36=65336 � 1=1820:

The maximum possible transition probability over the entire map T is 2�20: However, the di�usion
properties of T (see Section 4.4) and the fact that the 4 given pre-image di�erences of f do not correspond
to the 20 given image di�erences suggest that smaller probabilities should be expected when more levels are
combined.

Consequently, one must assume a transition probability considerably less than 2�60 for the map E(3):
One exception is the case where the second or third pass through the map T operates on input with di�erence
0: This could raise the probability, however only to some value under 2�40:

Hence, attempts to apply the theory of [2] to one Feistel round result in transition probabilities consid-
erable less than 2�40: This approximation is rather rough, but the exact values are even smaller. One can
assume that the transition probabilities are smaller than those of DES [2].

Since the number of required ciphertext pairs is larger than the reciprocal of the respective transition
probability, no practical di�erential cryptanalytical attack on the MAGENTA cipher is obtainable. This

12

estimation does not preclude the possibility that combining these methods with other currently unknown
attacks might result in a more successful attack.

With respect to the current state-of-the-art, the MAGENTA cipher is secure against di�erential cryptan-
alytical attacks based on XOR-tables. It is still open whether the use of other di�erences result in stronger
attacks.

8 Linear Cryptanalysis

Linear cryptanalysis deals with attempts to reconstruct the key based on a�ne linear approximations of the
relationships between plaintext bits, ciphertext bits, and key bits. Chosen-plaintext attacks like those used
in di�erential cryptanalysis are in general not required here, provided that a large number of ciphertexts and
corresponding plaintexts are known. However, the success of these attacks can depend on how irregular the
plaintexts are distributed in the plaintext-space.

Up to now, linear cryptanalysis attacks on DES [13, 12] and FEAL [14, 1, 15] have been published. The
suitability of certain partial maps of the round functions for a�ne linear approximations was utilized for
both of these algorithms | within the �ve S-boxes for DES and within the maps S0 and S1 for FEAL. The
search for a similar part of the MAGENTA algorithm leads one to the analysis of the non-linearity properties
of the map f:

Analogous to [1], the linear approximation table of f was computed. For each of the non-linear Boolean
functions f0; : : : ; f7 and every XOR sum f0 � f1; f0 � f2; : : : ; f0 � f1 � : : : � f7 as well as all the linear
functions, it was determined how many digits of the values in the table agree with the corresponding digits
in the linear function under consideration. In total, 2552 values between 0 and 256 were computed. The
table entries were normalized by subtracting 128:

The largest and smallest table entries for each column were determined. All entries were between �24 and
26: These values can be considered \normal," since they roughly correspond to those expected on average
from randomly selected Boolean functions. The value 26 occurred with the following linear combinations:

f1 � f2 � f3; f1 � f3 � f4 � f6;
f1 � f3 � f6; f2 � f3 � f4 � f6;
f1 � f4 � f7; f2 � f3 � f5 � f6;
f2 � f6 � f7; f3 � f4 � f5 � f6 :

A linear approximation is described in [1] for part of the �ve S-boxes which is correct with probability
12=64: This means that the negation of this linear function correctly approximates the Boolean function
under consideration with probability 52=64 = 0:8125: This is a signi�cant deviation from the probability
0:5: In contrast, the best a�ne linear approximation for parts of the function f are correct with probability
(128 + 26)=256 � 0:6:

In [1, p.353], a formula for evaluating combinations of a�ne linear approximations is given. The probabil-

ity that the combination of approximations is correct is 1=2+2l�1
Ql

i=1 pi; when l a�ne linear approximations
with probabilities 1=2 + pi; 1 � i � l are combined. Applying this to the map E(3) using pi = 0:6 (l = 12)
results in a value approximately 1=2 + 2 � 10�9: This value is an upper bound for the best a�ne linear
approximation for E(3): The real maximal value is presumably lower, but \optimal" combinations from level
to level were not investigated. As in Section 7, it is expected here that the di�usion properties of T (see
Section 4.4) considerably hinder the search for useful combinations.

According to [1], approximately p�2 plaintext-ciphertext pairs are required in order to use an a�ne linear
approximation, when the approximation is correct with probability 1=2 + p: This means that an attack on
the function E(3) would require at least 2:5 �1017 pairs. Hence, no practical attacks using linear cryptanalysis
are foreseeable for the MAGENTA algorithm. Furthermore, the entries in the linear approximation table
con�rm the non-linearity of f mentioned in Section 4.1.

13

9 Palindrome Properties

In the MAGENTA algorithm, six or eight rounds of the so-called Feistel permutation

(X1; X2) 7! (X2; X1 � FZ(X2))

are applied in the form of the function Fy(x) (Equation 8). The sequence of round-keys y forms a palindrome:
K1; K1; K2; K2; K1; K1 for 128-bit keys, K1; K2; K3; K3; K2; K1 for 192-bit keys, and K1; K2; K3; K4;
K4; K3; K2; K1 for 256-bit keys.

A property of this type was investigated in [18] for DES. Similar cases were considered in [11] and [16]
from the point of view of constructing pseudo-random permutations. The most important statement for the
MAGENTA algorithm from these sources is that for all keys K (128, 192, or 256 bit) and (x0; : : : ; x15) 2 B16

the following holds:
V ((EncK(x0; : : : ; x15)) = Enc�1K (V (x0; : : : ; x15)); (12)

where V (x0; : : : ; x15) = (x8; x9; : : : ; x15; x0; x1; : : : ; x7): It is therefore simple to represent the decryption
function in terms of the encryption function. This is an advantage when implementing the algorithm (in
contrast to other block-ciphers), because the sequence of round-keys is the same for encryption and de-
cryption. On the other hand, it may be desirable to separate users with only encryption and respectively
decryption permissions, and the property described in (Equation 12) o�ers the possibility to circumvent this
separation.

It is not possible to meet the concept of \pseudo-randomness" [11, 16] with this property, since randomly
generated permutations do not have this property with higher probability. From current knowledge, crypto-
graphic weaknesses can only be found in this context when OFB-mode with the map V �Enc is used. The
arising addition sequence would have a period of at most 256:

Another useful result from [18] states that for every key (y0; : : : ; y15) 2 B16 there are at least 264 plaintext
blocks with the property Enc(y0;:::;y15)(x0; : : : ; x15) = V (x0; : : : ; x15): It is expected that this set of plaintext
blocks depends on the key and is di�cult to describe. There are also no clues which indicate that these sets
contain considerably more than 264 plaintext blocks. Hence, there is no reason to believe that this property
causes any cryptographic weaknesses in the MAGENTA algorithm. The analogous property for DES shows
that the cipher has at least 232 �xed points for certain special keys. As a result, only statements about cycles
were derived in [18].

This property implies that the cycle representation of the MAGENTA algorithm is composed of at least
263 cycles. The average cycle length, which plays a role if OFB-mode is used, is expected to be in the same
range as the maximal cycle length of DES [9] (somewhere between 263 and 264). That is less than what is
possible for 128-bits, due to the fact that a randomly generated permutation over f0; 1g128 has no more than
120 cycles with high probability [17], but it should be enough for cryptographic purposes.

The special casesKi = Kj for all sizes of keys must be given extra attention. Since the same permutation
is conducted six times, it is expected that the average cycle length is shorter than in the general case. If a
cycle length of a Feistel round is divisible by 6; then this cycle splits into 6 shorter cycles when six rounds
of this type are applied.

In conclusion, the palindromic properties of the MAGENTA algorithm do give rise to certain special
properties. However, by paying attention to these properties (for example, excluding 128-bit keys with
K1 = K2), it seems that they cause no signi�cant cryptographic weaknesses.

10 Conclusions

To date, no signi�cant security weaknesses are known for the MAGENTA block cipher algorithm. It seems
to have su�cient avalanche properties, no statistical weaknesses have been found, and attacks based on
di�erential and linear cryptanalysis do not o�er any signi�cant improvement over a brute force attack.
More analysis is certainly required, especially for 192 and 256 bit keys, but since the building blocks of the
algorithm appear to be cryptographically sound we don't expect these additional key sizes to introduce any
weaknesses. Based on our current knowledge we can hypothesize that the work factor required to break a

14

MAGENTA system is of the order of the key space, i.e., 2127 for 128-bit keys, 2191 for 192-bit keys, and 2255

for 256-bit keys.
There are some algebraic and palindromic properties which yield weak keys, namely those keys K =

(K1; : : : ;Kj); (j 2 f2; 3; 4g with two or more identical sub-keys Ki; and keys with one or more sub-keys
having all 8 bytes identical. However, such weak keys are rare and can easily be avoided in an implementation.

Although designed as a block cipher, there are other applications for which MAGENTA is suitable. For
example, it can easily be used for a stream cipher algorithm by following the standard procedures for any
general block cipher algorithm, for example, by using it in 1-bit cipher feedback mode. MAGENTA is
also suitable for use as a pseudo-random number generator. One can set the key and plaintext at a �xed
random bit pattern and take some convenient subset of these input bits as counter bits. Then, using the
algorithm reproducible pseudo-random numbers can be generated. However, some of the algebraic properties
of MAGENTA, especially those of the function PE (Equation 3), simplify the construction of collisions when
MAGENTA is applied as a hash function or MAC generator, so MAGENTA is not suitable for either of these
applications [5].

MAGENTA is very well-suited for implementation in a wide variety of environments. The entire algorithm
can be implemented completely using bit operations, which ensures e�cient software implementations (in
computer languages with the bit operation capability) and ease of implementation in hardware. Since the
basic data unit is the 8-bit byte, MAGENTA is also particularly suitable for small smart-card processors.
The algorithm can also be optimized for small storage space. The size of the table of 256 bytes representing
the function f (Equation 1) can be traded against execution speed, for example, by storing only every l-th
value of the complete 256 byte table used and computing any required value by additional shifts. The whole
algorithm also �ts into the fast-address area of most processors which leads to fast implementations. Due to
the convenient data format, the small storage space necessary, and the fast encryption speed, the algorithm
is also very suitable for applications in ATM, HDTV, B-ISDN, voice and satellite applications.

A further advantage of MAGENTA is that it contains no obvious hiding places for trap doors. As
mentioned in the introduction, the algorithm was built on simple and transparent design techniques, and
there are no magic tables or constants. The only possible bone of contention is the choice of the primitive
polynomial p(x) = x8 + x6 + x5 + x2 + 1 used for the function f (Equation 1). In fact any one of the 16
primitive polynomials of GF (256) could have been applied.

References

[1] E. Biham. On Matsui's linear cryptanalysis. In Proc. EUROCRYPT '94, volume 658 of Lecture Notes
in Computer Science, pages 81{91, 1995.

[2] E. Biham and A. Shamir. Di�erential cryptanalysis of DES-like cryptosystems. Journal of Cryptology,
4(1):3{72, 1991.

[3] H. Feistel, W. Notz, and J.L. Smith. Some cryptographic techniques for machine-to-machine data
communications. Proceedings of the IEEE, 63(11):1545{1553, November 1975.

[4] W. Fumy and H.P. Rie�. Kryptographie. R. Oldenbourg Verlag, M�unchen Wien, second edition, 1994.

[5] SIT GmbH. Abschlu�bericht - Untersuchung eines universellen Kryptoalgorithmus. Technical report,
SIT GmbH, 1994.

[6] H. Gustafson, E. Dawson, and B. Caelli. Comparison of block ciphers. In Proc. AUSCRYPT '90, volume
453 of Lecture Notes in Computer Science, pages 208{220, 1990.

[7] K. Huber. Neue Kryptographische Verfahren durch Kombination von Operationen in endlichen K�prpern
mit der schnellen Walshtransformation. Unpublished manuscript, 1990.

[8] K. Huber and S. Wolter. Telekom's MAGENTA algorithm for en-/decryption in the gigabit/sec range.
In ICASSP 1996 Conference Proceedings, volume 6, pages 3233{3235, 1996.

15

[9] R.R. Juenemann. Analysis of certain aspects of output feedback mode. In Proc. CRYPTO '92, pages
99{127. Plenum Press, 1983.

[10] S.Y. Kung. VLSI Array Processors. Prentice Hall, 1988.

[11] M. Luby and C. Racko�. How to construct pseudorandom permutations from pseudorandom functions.
SIAM J. Computing, 17(2):373{386, April 1988.

[12] M. Matsui. The �rst experimental cryptanalysis of the Data Encryption Standard. In Proc. CRYPTO
'94, volume 839 of Lecture Notes in Computer Science, pages 1{11, 1994.

[13] M. Matsui. Linear cryptanalysis method for DES cipher. In Proc. EUROCRYPT '93, volume 765 of
Lecture Notes in Computer Science, pages 386{397, 1994.

[14] M. Matsui and A. Yamagishi. A new method for known plaintext attack of FEAL cipher. In Proc.
EUROCRYPT '92, volume 658 of Lecture Notes in Computer Science, pages 81{91, 1993.

[15] K. Ohta and K. Aoki. Linear cryptanalysis of the Fast Data Encipherment Algorithm. In Proc. CRYPTO
'94, volume 839 of Lecture Notes in Computer Science, pages 12{16, 1994.

[16] J. Pieprzyk and B. Sadeghiyan. Design of Hashing Algorithms, volume 756 of Lecture Notes in Computer
Science. Springer, 1993.

[17] W.N. Satschkow. Wahrscheinlichkeitsmethoden in der kombinatorischen Analysis (russ.). Verlag
Nauka,, Moscow, 1978.

[18] G.J. Simmons and J.H. Moore. Cycle structure of the DES for keys having palindromic (or antipalin-
dromic) sequences of round keys. IEEE Transactions on Software Engineering, SE-13(2):262{273, 1987.

[19] J.P Vaseur. Verschl�usselungsanordnung mit Mischverdrahtung. Deutsches Patentamt Auslegeschrift
1148397, Anmeldetag: 2.Juni 1959, Auslegeschrift: 9.Mai 1963, Anmelder: Compagnie Generale de
Telegraphie sans Fil, Paris.

[20] Rodnay Zaks. Programming the Z80. SYBEX Inc., Berkeley, USA, 1980.

A Assembler Code

The �rst function is an assembler version of the C function memcpy. This function copies a number of
consecutive bytes from one location in memory to another. In MAGENTA, this function is used to copy
blocks of either 8 or 16 bytes. The assembler code is essentially that in [20, p.441], with the exception that
we have unrolled the for-loop.

MEMCPY: LD IX,FROM

LD IY,TO

NEXT: LD A,(IX)

LD (IY),A

INC IX

END: INC IY

repeat NEXT to END 7 or 15 more times

The second function implements setting up a key. It records the size of the key and uses the memcpy
function to copy the raw key data to two, three, or four sub-key locations required for the encryption and
decryption operations, depending on the key size.

KEY: LD A,(KSIZEIN)

LD (KSIZE),A

memcpy first 8 byte block of key to location K0

memcpy second 8 byte block of key to location K1

16

SUB A,128

JP Z,DONE

memcpy third 8 byte block of key to location K2

SUB A,64

JP Z,DONE

memcpy fourth 8 byte block of key to location K3

DONE:

The third function initializes an array of 256 bytes starting at FTABLE which represents the function
f (Equation 1). This code is based on an optimized C implementation. The register B is initialized to 1
and left-shifted until the carry bit is set, at which point the value in B is reduced by XOR-ing it with the
constant Q = 101: This part of the code is executed exactly 128 times.

INIT: LD HL,FTABLE

LD B,1

LD C,255

FOR: LD (HL),B

SLA B

JP NC,ENDIF

LD A,B

XOR Q

LD B,A

ENDIF: INC HL

DEC C

JP NZ,FOR

END: LD (HL),0

The last function implements � (Equation 5). The input is the 16-byte block starting at the address
DATA and the output is written back to the same location at the end of the function. TEMP is assumed
to be a 16-byte memory block used as temporary storage by the function. A table of 256 bytes representing
the function f (Equation 1) is assumed to have been loaded starting at FTABLE.

PI: LD IX,DATA

LD IY,TEMP

NEXT: LD E,(IX+8)

LD D,0

LD HL,FTABLE

ADD HL,DE

LD A,(HL)

XOR (IX)

LD HL,FTABLE

LD E,A

LD D,0

ADD HL,DE

LD B,(HL)

LD (IY),B

INC IY

LD E,(IX)

LD D,0

LD HL,FTABLE

ADD HL,DE

LD A,(HL)

XOR (IX+8)

LD HL,FTABLE

LD E,A

17

LD D,0

ADD HL,DE

LD B,(HL)

LD (IY),B

INC IX

END: INC IY

repeat NEXT to END 7 more times

memcpy 16 bytes from TEMP to DATA

18

