One-Time Pad or Vernam Cipher

• The one-time pad, which is a provably secure cryptosystem, was developed by Gilbert Vernam in 1918.
• The message is represented as a binary string (a sequence of 0’s and 1’s using a coding mechanism such as ASCII coding.
• The key is a truly random sequence of 0’s and 1’s of the same length as the message.
• The encryption is done by adding the key to the message modulo 2, bit by bit. This process is often called exclusive or, and is denoted by XOR. The symbol \oplus is used.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>$c = a \oplus b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
One-Time Pad or Vernam Cipher

Example: Let the message be IF then its ASCII code be (1001001 1000110) and the key be (1010110 0110001). The ciphertext can be found exoring message and key bits

Encryption:

1001001 1000110 plaintext
1010110 0110001 key
0011111 1110110 ciphertext = (v)

Decryption:

0011111 1110110 ciphertext
1010110 0110001 key
1001001 1000110 plaintext
Why One-Time Pad is provably secure?

Or how can we prove it is unbreakable?

• The security depends on the randomness of the key.
• It is hard to define randomness.
• In cryptographic context, we seek two fundamental properties in a binary random key sequence:
 1. Unpredictability: Independent of the number of the bits of a sequence observed, the probability of guessing the next bit is not better than \(\frac{1}{2} \). Therefore, the probability of a certain bit being 1 or 0 is exactly equal to \(\frac{1}{2} \).
 2. Balanced (Equal Distribution): The number of 1’s and 0’s should be equal.
Mathematical Proof

- the probability of a key bit being 1 or 0 is exactly equal to $\frac{1}{2}$.
- The plaintext bits are not balanced. Let the probability of 0 be x and then the probability of 1 turns out to be $1-x$.
- Let us calculate the probability of ciphertext bits.

<table>
<thead>
<tr>
<th>m_i</th>
<th>prob.</th>
<th>k_i</th>
<th>prob.</th>
<th>c_i</th>
<th>prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>x</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>$\frac{1}{2}x$</td>
</tr>
<tr>
<td>0</td>
<td>x</td>
<td>1</td>
<td>$\frac{1}{2}$</td>
<td>1</td>
<td>$\frac{1}{2}x$</td>
</tr>
<tr>
<td>1</td>
<td>$1-x$</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>1</td>
<td>$\frac{1}{2}(1-x)$</td>
</tr>
<tr>
<td>1</td>
<td>$1-x$</td>
<td>1</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>$\frac{1}{2}(1-x)$</td>
</tr>
</tbody>
</table>

- We find out the probability of a ciphertext bit being 1 or 0 is equal to $(\frac{1}{2})x + (\frac{1}{2})(1-x) = \frac{1}{2}$. Ciphertext looks like a random sequence.
A Practical One-Time Pad

- A satellite produces and broadcasts several random sequences of bit at a rate fast enough such that no computer can store more than a very small fraction of them.
- Alice & Bob use a PKC to agree on a method of sampling bits from these random sequences.
- They use these bits to form a key for one-time pad.
- Eve, in theory, can break the PKC they used even though doing so is difficult.
- But by the time she breaks it, random bits Alice & Bob collected disappeared and Eve can not decrypt the message since she hasn’t got the resources to store all the random bits that have been broadcast.
• Symmetric-key ciphers
• Encrypt individual characters at a time,
• Faster and less complex in hardware,
• They are desirable in some applications in which
 • buffering is limited
 • bits must be individually processed as they are received.
 • Transmission errors are highly probable.
• Vast amount of theoretical knowledge.
• Various design principles.
• Widely being used at present, will probably be used in the future.
Basic Idea comes from **One-Time-Pad** cipher,

Encryption : \[c_i = m_i \oplus k_i \quad i = 1,2,3,... \]
- \(m_i \) : plain-text bits.
- \(k_i \) : key (key-stream) bits
- \(c_i \) : cipher-text bits.

Decryption : \[m_i = c_i \oplus k_i \quad i = 1,2,3,... \]
- Provably Secure.

Drawback : Key-stream should be as long as plain-text. Key distribution & Management difficult.

Solution : Stream Ciphers (in which key-stream is generated in pseudo-random fashion from relatively short secret key.)
Randomness: Closely related to *unpredictability*.

Pseudo-randomness: PR sequences appears random to a computationally bounded adversary.

- Stream Ciphers can be modeled as Finite-state machine.

\[S_{i+1} \rightarrow S_i \rightarrow F \rightarrow G \rightarrow k_i \rightarrow m_i \rightarrow c_i \]

- \(S_i \): state of the cipher at time \(t = i \).
- \(F \): state function.
- \(G \): output function.

Initial state, output and state functions are controlled by the secret key.
1. Synchronous Stream Ciphers

- Key-stream is independent of plain and cipher-text.
- Both sender & receiver must be synchronized.
- Resynchronization can be needed.
- No error propagation.
- Active attacks can easily be detected.

2. Self-Synchronizing Stream Ciphers

- Key-stream is a function of fixed number t of cipher-text bits.
- Limited error propagation (up to t bits).
- Active attacks cannot be detected.
- At most t bits later, it resynchronizes itself when synchronization is lost.
- It helps to diffuse plain-text statistics.
Analysis

• Efforts to evaluate the security of stream ciphers.

 1. Mathematical Analysis
 • Period and Linear Complexity,
 • Security against Correlation Attacks.

 2. Pseudo-randomness Testing
 • Statistical Tests,
 • Linear Complexity,
 • Ziv-Lempel Complexity
 • Maximum Order Complexity,
 • Maurer’s Universal Test.

• In testing, all the tests are applied to as many key-streams of different lengths as possible.
Linear Feedback Shift Register - LFSR

$C(x) = 1 + c_1 x + c_2 x^2 + \cdots + c_L x^L$: Connection Polynomial

- If $C(x)$ is primitive, LFSR is called *maximum-length*, and the output sequence is called *m-sequence* and its period is $T = 2^L - 1$.

- *m-sequences* have good statistical properties.
- However, they are predictable.
• If 2L successive bits of an m-sequence are known, the shortest LFSR which produces the rest of the sequence can be found using Berlekamp-Massey (BM) algorithm.
• Generally, the length of the shortest LFSR which generates a sequence is called linear complexity.

Stream Cipher Designs Based on LFSRs

• LFSRs generate m-sequence.
• However, “Linearity is the curse of cryptographer.”
• The methods of utilizing LFSRs as building blocks in the stream cipher design.
• The design principle:
 Use other blocks which introduce non-linearity while preserving the statistical properties of m-sequences.
Nonlinear combination Generators

The Combiner Function should be,
1. Balanced,
2. Highly nonlinear,
3. Correlation Immune.
• Utilizing the *algebraic normal form* of the combiner function we can compute the linear complexity of the output sequence.

Example (Geffe Generator) :

\[
F(x_1, x_2, x_3) = x_1 x_2 \oplus x_2 x_3 \oplus x_3
\]

If the lengths of the LFSRs are relatively prime and all connection polynomials are primitive, then

\[
L = L_1 L_2 + L_2 L_3 + L_3
\]

\[
T = (2^{L_1} - 1) \cdot (2^{L_2} - 1) \cdot (2^{L_3} - 1)
\]

When we inspect the truth table of the combiner function we gain more insight about the security of Geffe generator.
The combiner function is balanced.
However, the correlation probability,
\[P(z = x_1) = \frac{3}{4}. \]
Geffe generator is not secure.
Nonlinear Filter Generator

- Upper bound for linear complexity,

\[L_m = \sum_{i=1}^{m} \binom{L}{i} \quad m : \text{nonlinear order of the filter function.} \]

- When \(L \) and \(m \) are big enough, the linear complexity will become large.
Clock-controlled Generators

• An LFSR can be clocked by the output of another LFSR.
• This introduces an irregularity in clocking of the first LFSR, hence increase the linear complexity of its output.

Example: Shrinking Generator
• Relatively new design.
• However, it is analyzed and it seems secure under certain circumstances.

\[
\begin{align*}
\text{if } & \gcd(L_s, L_A) = 1 \Rightarrow \\
T &= (2^{L_A} - 1) \cdot 2^{L_s-1} \\
L_A \cdot 2^{L_s-2} &< L < L_A \cdot 2^{L_s-1}
\end{align*}
\]
Different Designs

• SEAL, RC4.
 • They use expanded key tables,
 • Fast in software,
 • Look secure,
 • They have not been fully analyzed yet,
 • Efficient analysis tools are not developed.