SHADOW Version 1.7

Installation Manual

<ilaweb@nswc.navy.mil >

23 October 2001

Abstract

SHADOW is an Intrusion Detection System built on inexpensive hardware and free
software. This document details how to build, install and configure the system.

Contents

1 Introduction 4
2 History 4
3 Open Source Software 5
4 Installation 6
4.1 How to Build a SHADOW Sensor. 6
4.1.1 Hardware Requirements. 6

4.1.2 Install and Patch the Sensor’s Operating System Distribution. 6

4.1.3 Build a Custom Sensor Kernel. 8

4.1.4 Unpack the SHADOW-1.7 Software. 10

4.1.5 Install Tepdump.o 10

4.1.6 Install OpenSSH. o 10

4.1.7 Configure SHADOW. 13

4.1.8 Set Crontab and System Start-up Files. 13

4.1.9 Protect Your Sensor.o 14

4.1.10 Locate Your Sensor.o 15

4.2 How to Build a SHADOW Analyzer. 16
4.2.1 Analyzer Hardware Requirements. 16

4.2.2 Install and Patch the Analyzer Operating System. 17

4.2.3 Build a Custom Analyzer Kernel. 17

4.2.4 Create SHADOW User Account. 19

4.2.5 Unpack the SHADOW-1.7 Software 19

4.2.6 Install the Accessories. 20

4.2.6.1 Install and Configure Apache. 20

4.2.6.2 Install the SHADOW Home Web Page. 20

4.2.6.3 Install the Compress::Zlib Perl Module. 21

4.2.6.4 Install Tcpdump on the Analyzer. 21

2

4.2.6.5 Install and configure OpenSSH.

4.2.6.6 Test the Analyzer to Sensor Connection.
4.2.6.7 Install and Configure NMAP.

4.2.6.8 Configure SUDO.

4.2.7 Install and Configure SHADOW software.
4.2.7.1 Create the Required Directories.

4.2.7.2 Configure the Individual Sensor (Site) Configuration Files. .

4.2.7.3 Configure the Tepdump Filters.
4.2.74 Configure the CGI Scripts.
4.2.74.1 Configure the compose IR.cgi Script.

4.2.7.4.2 Configure the search.cgi Script.

4.2.7.4.3 Configure the nmap.cgi Script.

4.2.7.5 Configure the Statistics Scripts.

4.2.8 Test the SHADOW Scripts.
4.2.9 Configure the Crontab and System Startup Files.
4.2.10 Protect Your Analyzer. L.
4.3 Put Your SHADOW System into Production.

A SHADOW Sensor Kernel Configuration
B SHADOW Analyzer Kernel Configuration
C Protecting your SHADOW sensor

D Protecting your SHADOW Analyzer

References

26

48

54

61

65

69

1 Introduction

SHADOW is an Intrusion Detection system based on inexpensive PC hardware running Open
Source, public domain, or freely available software components. A SHADOW system consists
of at least two pieces: a sensor located at a point near an organization’s firewall; and an
analyzer located inside the firewall. SHADOW performs traffic analysis; the sensor collects
address information from all IP packets that travel between an organization and the Internet;
the analyzer examines the collected data and displays user defined "interesting" events on
a web page. SHADOW is based on tcpdump and libpcap software packages developed at
the Lawrence Berkeley Laboratory to collect the packets and to filter the collected traffic
according to user defined criteria. Using Perl software developed at the Naval Surface Warfare
Center Dahlgren Division, the filtered results are displayed via an Apache web server on an
analyzer station being regularly monitored by an intrusion detection analyst. The key to
effective use of SHADOW is intelligent definition of the tcpdump filters based on the network
environment and educated recognition of known and potential exploits from traffic patterns.

This document outlines the steps for installing a SHADOW system. These steps are very
broad and leave a lot of work for the installer. The person performing the installation must
be intimately familiar with the workings of his Linux system and the process of installing
open source software. If you don’t know Linux thoroughly, you are going to have trouble!!
It’s possible to install a working SHADOW system, but it will be tough. Steps not fully
documented here can be show stoppers; for example, if you don’t have a C compiler on your
system, you cannot install any software from the source, and you will have to find a way
around that problem. Another example: the SHADOW scripts are written in Perl. If your
system doesn’t have Perl, you have another problem.

This document concentrates on installation for a Red Hat Linux system. That is the op-
erating systems used to develop SHADOW. SHADOW is known to work on other systems,
however, the procedures outlined here have been developed for and tested only on Red Hat
Linux. You will have to adapt them to your particular flavor of Unix or Linux.

2 History

Before Intrusion Detection became popular, before hackers made the evening news, analysts
at research and development sites were interested in examining the network traffic traversing
through their sites. The Naval Surface Warfare Center/Dahlgren Division is one such site.
But since “computer security” had not yet made it to the mainstream of consciousness, little
money was available for buying or building custom devices to examine patterns of traffic.

So, Stephen Northcutt, at NSWC, began building sniffers from old discarded workstations
and public domain software. He used a software package from Texas A & M University
called “netlog,” which consists of three programs, icmplogger, tcplogger, and udplogger. These
programs ran only on Sun equipment collecting IP packets of the appropriate type. Auxiliary
programs read the collected data and displayed it in human readable format. Stephen wrote
a collection of Perl scripts to parse the data and create web pages on which were written
“events of interest” that his scripts found in the raw data.

At that point, SHADOW was born. It was not yet named, and it had a lot of growing up
to do. Unfortunately, using old Sun boxes, proved to be limiting. They were functional but
obsolete in terms of computing power. They ran netlog which provided the data to generate
the web interface. But as the network traffic increased, and the sources of Suns started
drying up, alternatives were sought. NSWC discovered that performance could be improved
by using PCs and Linux instead of the recycled Suns. The viable lifetimes of new PCs were
longer than the Suns. Unfortunately, the netlog package was not available for Linux on the
Intel x86 hardware. A package called tcpdump from Lawrence Berkeley Laboratory, was
available which offered more capability than netlog. The switch to tcpdump was made, and
the project was named SHADOW. SHADOW was originally built on Red Hat Linux Version
5.0. It has been migrated to every subsequent version of Red Hat Linux.

3 Open Source Software

In the days of the “big iron,” those large scientific computer mainframes like Control Data
6600s and Crays, government sites never fully depended on the computer vendors to supply
and support the operating system software. In fact, when the first Cray machines were
built, Department of Energy sites had a time-sharing operating system ready to run on
the hardware before the vendor did. There were and still are certainly advantages to this
approach. Operation of the site computers was not dependent on the vendor’s priorities
or abilities. Security, which was a high priority of the government organization but not
necessarily of the vendor, could be built in from the start. If a problem occurred with the
system software, the source code and usually the developers of it were available to assist in
finding a solution. Given the availability of the source code, (and someone technically astute
enough to find and fix it), any software problem can be solved; without it, you are at the
mercy of the vendor.

From a security perspective, the only way to insure that a piece of software does what it’s
supposed to do and only what it’s supposed to do is to examine the code. Commercial
software companies will gladly sell you their code in binary form and claim that it will
function as advertised. But read the license. It says that the software may not do what it is

supposed to do; it may have unpredictable, or even damaging, side effects on your hardware
or other software; but the company is not responsible. Once you accept the license, the risk is
yours alone. That says a lot about what such companies feel about quality and responsibility.
Caveat emptor.

4 Installation

Installation of SHADOW will be described in two sections, one for the sensor and one for
the analyzer.

4.1 How to Build a SHADOW Sensor.

4.1.1 Hardware Requirements.

A SHADOW sensor just reads data packets from a network interface and writes those packets
to disk, so there is no need for an expensive video card or sound card. It runs well on 128
MB of memory. Experience so far has shown that a 350 MHz Pentium II has never missed
a packet on a 10/100 mbs network, so anything faster than that should likewise suffice. If
your network is running gigabit speeds, you’ll have to use the trial and error approach to
obtaining a sufficiently fast sensor. A SCSI card and SCSI disks are highly recommended
because they are faster and more expandable than the IDE drives normally available on PC
class machines. Nothing smaller than a 9 GB disk will hold your raw files for long, so at least
an 18 GB Ultra-160 SCSI drive would be preferred. To make the sensor externally invisible,
you should use two network cards; one will have no IP address, and will collect the raw data
on the principal pathway into your network, and the other will be logically placed inside the
site firewall for communication with the SHADOW analyzer, also inside the firewall.

4.1.2 Install and Patch the Sensor’s Operating System Distribution.

This is not going to be a step-by-step guide through the installation of the Red Hat Linux
operating system distribution. The official Red Hat Installation guide, [RHL-Install] will
suffice for that purpose. This document will enumerate some points at which a divergence
from a “normal” installation step, or a specific configuration choice should be made.

The first choice to be made is the “class” of installation. Red Hat offers five choices: worksta-
tion, server, laptop, custom, or upgrade. If you are upgrading an existing SHADOW sensor
to a later version of the operating system, choose “upgrade.” Otherwise, choose “custom.”

The sensor is basically a limited usage computer. It doesn’t need a lot of the functionality
that Red Hat would have you install for its workstation, server, or laptop classes. Using the
custom class will enable you to pick and choose the packages to be installed.

Shortly after beginning the install, you have the opportunity to partition your disks. By
default, only 68 bytes of the IP packet are collected. Still, a gzipped file of one hour’s raw
output can exceed 300 MB during the busiest times of day, for a site with high speed internet
connections. For most weekdays, the daily total of gzipped hourly files can exceed 2 GBytes.
That’s a lot of data, so you need to maximize the size of the partition on which the data
will reside. You can make the root partition about 4 GB and allocate the rest of your 9 GB
or larger drive for a “/LOG” partition to hold the raw data files. If you expect your traffic
volume to be significantly different, adjust the disk size and or partitions accordingly.

Later the installation process presents the network configuration window. If you have in-
stalled two network interface cards (NICs), you will be offered the opportunity to configure
each of them. Be sure to configure only one of them with the IP address, netmask, etc. that
the installation process asks for. Remember, one NIC of the sensor will be made “invisible;”
it has no assigned address and will not be visible to other machines on its network segment.

The “Firewall Configuration” section of the installation process is intended to provide some
kernel level capability to filter, block, and/or log incoming IP packets. The same result is
achieved by manually constructing an iptables script, as described in 4.1.9 and C, so you
may bypass this installation step, if you wish. If not, choose the “High” security level. The
sensors need to be protected as much as possible. But remember, for SHADOW, the analyzer
must be able to connect to the sensor to fetch the data files and for periodic maintenance.
Detailed configuration of SSH will be described in 4.2.7.2 below.

Eventually, the installation process will reach the Package Group Selection section. The
sensor needs no X Windows, Multimedia, Games, Sound Services, Development Tools, etc.,
etc. If you leave a lot of the tools on the system, you are providing those tools to potential
intruders. Granted that a sophisticated intruder may only be inconvenienced by the lack of
those tools, any inconvenience foisted upon such folks may give you extra time to detect and
react to a system compromise. Use some common sense about what packages to install. If
it is not directly related to the job of a SHADOW sensor, i.e. reading and storing network
packets, it’s not needed. If it is needed later, it can be installed then. Since you should
build a custom kernel for the sensor, (see 4.1.3), you may want to leave the development
tools until after that kernel rebuild is done. You can however, build a custom kernel on your
analyzer and remotely install it at a later time.

After the distribution installation has completed and the system has re-booted, go to http:
//updates.redhat.com/ and download the updates for the packages in RPM format for your
distribution. These are the “Patches” to the distribution that have been made since the it
was released. IT IS VERY IMPORTANT TO INSTALL THESE PATCHES AND

TO PERIODICALLY MONITOR THE SITE FOR ADDITIONAL ONES!!!!
The security risks are constantly changing, if you assume that you are up to date with
your security preparedness, someone out there is working diligently to prove you wrong.
Once you’ve collected all the RPMs (Red Hat Package Manager, the files in which Red Hat
furnishes its software), into a directory, use the rpm command to update your distribution:

rpm -Fuvh *.rpm

Note that you should not fetch and apply updated RPMs for the kernel. The kernel will be
built and customized to your hardware in step 4.1.3 below.

If you installed two NIC cards, add the line “ifconfig $PASSIVE_IF up ”to the /etc/rc.d/rc.local
file, where $P4ssIVE_IF is replaced by the name of the interTrojanface that will be invisible.
This will insure that at each system boot, that interface will be brought up with no assigned
address so that tcpdump can capture the packets “invisibly.” This makes the sensor difficult
to detect and attack, since with no address, it cannot be the destination of any packets.

4.1.3 Build a Custom Sensor Kernel.

As released, the Red Hat operating system includes a kernel that is configured to recognize
and handle a large variety of hardware configurations. It is built with kernel loadable modules
enabled; small pieces of code that the kernel can load and execute as needed. For example,
if your machine has a 3Com Ethernet card, the boot process will detect it and load the
appropriate 3Com module when it brings up networking. Any other Ethernet loadable
modules will be ignored. For maximum flexibility in the installation process, Red Hat builds a
large number of kernel loadable modules for many of the most likely hardware configurations.
This greatly simplifies initial OS installation. As the installation process proceeds, hardware
components are recognized, and the kernel loads the appropriate driver to interface to that
component. The kernel is able to dynamically reconfigure itself to match the hardware it
finds.

Of course, there are counterpoints to this flexibility. Many modules that are never needed
are built and indexed for hardware configurations that will never exist on your system. The
kernel itself is configured to use only those instructions common to all x86 Intel processors,
i.e. the 80386. Extended instructions for later processors, e.g. the Pentium, Pentium II, or
Pentium III are not available unless the kernel core is recompiled for a specific processor.
Kernel loadable modules may also present potential security concerns. It has been docu-
mented that the creation of a “Irojan” kernel module is possible. So, for example, someone
creates a module to give a particular process special privileges if the module is loaded into
memory by the kernel. If this module is given the name of the your system’s sound card,

the kernel will load it when the sound card is needed. When that happens, the creator of
the module can operate with kernel privileges.

To avoid those problems and to optimize the performance of the Linux kernel for your specific
hardware, build a custom kernel. The latest version of the Linux kernel should be downloaded
from http://www.kernel.org to insure that it has the latest fixes and capabilities.

Here are the steps to build a custom kernel:

1. Download the latest kernel, e.g. linuz-2.4.9.tar.gz.
rm /usr/src/linuc
cd /usr/src; tar zvfz /some/path/linuz-2.4.9.tar.gz
In -s linuz-2.4.9 linuz

cd /usr/src/linuz

SOt N

make menuconfig(or mconfig if running X Windows)

At this point, a menu will appear that presents you with all the possible hardware and
software configurations. Answer 'N’ to all hardware not on your system. Answer 'N’ to all
software unnecessary for your sensor, e.g. sound card, ISDN, etc. Answer 'N’ to “Enable
loadable module support.” When you complete your configuration, at the end of the menu,
click on Exit. which then creates a file, “.config” which contains all the configuration options
you selected during the process. See Appendix A for a copy of a sensor .config file that
defines the kernel configuration for a typical sensor.

Once your configuration file matches your hardware and desired software, build
the new kernel and put it into place by:
1. cd /usr/src/linuz
. make dep
make bzImage
make modules
make modules_install
cp System.map /boot/System.map-{$8VERSION}
cp arch/i386/boot/bzImage /boot/umlinuz-{$VERSION}

Edit the file /etc/lilo.conf to include the new kernel you just built.

© XN W

Run /sbin/lilo to re-install the boot loader with the new kernel information.

10. Re-boot your system to see if the new kernel will run.

Where $VERSION is the version of the kernel you are building, e.g. 2.4.9.

Be sure to study the document on how to build a Linux kernel, which can be found at:
http://www.linuxdoc.org/HOWTO/Kernel-HOWTO.html.

9

4.1.4 Unpack the SHADOW-1.7 Software.

The SHADOW software comes in a gzipped tarball: SHADOW-1.7.tar.gz. Choose a location
for unpacking the software. “/usr/local/SHADOW?” might be a good place, so you can
unpack the tarball in that location:

1. medir -p /usr/local/SHADOW
2. cd /usr/local/SHADOW
3. tar zvfz /tmp/SHADOW-1.7.tar.gz

4.1.5 Install Tcpdump.

Unfortunately, with release 6.2 and later of Red Hat Linux, Red Hat decided to abandon
the tcpdump that was “standard” from Lawrence Berkeley Labs. They applied a number
of patches that extended the capabilities of tcpdump. Those patches also changed the for-
mat of the output. SHADOW works by parsing the output lines from tcpdump, so it fails
with the new Red Hat version. When the www.tcpdump.org site assumed development and
maintenance of tcpdump, the version that they built was compatible with what SHADOW
expected. However, some bugs have been found in tcpdump. These fixes have been furnished
with the version of tcpdump included in the the SHADOW package. Alternatives to tepdump
for subsequent SHADOW releases are being examined.

Install tcpdump with the following command:

cd /usr/local/SHADOW/accessories/rpms
rpm -Uvh --force tcpdump-3.6.2-wdr2.1386.mpm

The source, patches, and spec files are also furnished, so non-Red Hat Linux users can
compile and install tcpdump as well.

4.1.6 Install OpenSSH.

The analyzer must communicate with the sensor. The mechanism chosen to implement that
communication is SSH, the secure shell. The sensor may be located outside the site firewall,
and thus may be more vulnerable to compromise or eavesdropping. SSH provides a mecha-
nism for communication between the analyzer and sensor that enhances authentication and
is resistant to eavesdropping. Because of proprietary code, patent, and copyright restrictions
on the original SSH, OpenSSH was selected for implementation with SHADOW. Red Hat

10

Linux 7.1 furnishes version 2.5.2p2 of OpenSSH in its distribution in five RPMs: openssh,
openssh-server, openssh-clients, openssh-askpass, and openssh-askpass-gnome. Included in
the SHADOW package is OpenSSH version 2.9.9p1 in a single RPM. Install it by:

cd /usr/local/SHADOW/accessories/rpms
rpm -Uvh --force /openssh-2.9.9p1-wdrl.<386.rpm

The tarball for OpenSSH 2.9.9pl is included as well .

Since the sensor will be the recipient of OpenSSH connections from the analyzer, the sshd
daemon must be configured to accept and authenticate those connections. Here is a list of
the changes to the default /etc/ssh/sshd_ config file, preceded by “->":

$0penBSD: sshd_config,v 1.34 2001/02/24 10:37:26 deraadt Exp $

This sshd was compiled with PATH=/bin:/usr/bin:/usr/local/bin:/usr/X11R6/bin

This is the sshd server system-wide configuration file. See sshd(8)

for more information.

Port 22

->Protocol 2,1

Don’t read ~/.rhosts and ~/.shosts files

11

->IgnoreRhosts no

Uncomment if you don’t trust ~/.ssh/known_hosts for RhostsRSAAuthentication
->IgnorelUserKnownHosts yes

->8trictModes yes

->X11Forwarding yes

->Rhostsduthentication yes

For this to work you will also need host keys in /etc/ssh/ssh_known_hosts

->RhostsRSAAuthentication yes

->RSA4uthentication yes

For this to work correctly, you must insure that the sensor file /root/.ssh/authorized_keys2
contains the SSH public keys of the SHADOW user generated on the analyzer. Detailed
instructions about installing SSH between the analyzer and the sensors are provided in the
section 4.2.6.5. The book cited in Ref. [SSH]| is highly recommended; it’s one of the best
available references for understanding SSH’s workings and how to configure it. Configuring
OpenSSH is not particularly difficult, once you’ve done it a few hundred times.

12

4.1.7 Configure SHADOW.

After the software package is unpacked, it needs to be configured. Three files require cus-
tomization: sensor_init.sh, std.ph, and std.filter.

Here are the requirements:
1. For sensor_init.sh:

(a) Set the variable SENSOR_PATH to point to where you've installed the
SHADOW package, e.g. /usr/local/SHADOW /sensor.

(b) Set the variable, SENSOR_VARIABLE to the name of the Perl header file
which contains the configuration parameters, e.g. std (leave off the .ph ex-
tension).

2. For std.ph:

(a) set the variable LOGPROG to point to the location of the tcpdump binary.

(b) Set the variable PROGPAR to indicate the interface which will be used to
siphon off passing IP packets. It will be set to “-i eth0” if eth0 is the “invisible”
interface.

(c) Set the variable LOGFILE to point to the directory into which the raw tcp-
dumyp files will be written. These files are potentially very large, so make sure
you have plenty of room. “/LOG” is the default.

3. For std.filter, define a tcpdump filter to insure that all the traffic you want to see
or search is captured from your invisible interface. The std.filter file furnished in
the SHADOW-1.7 package contains: “ip.” This filter says capture all IP packets.
You may want to modify this filter to eliminate some traffic you don’t want to
save in your raw data files. Be careful to make this a simple filter so that the bulk
of the packet headers are captured; more sophisticated filters are defined and used
on the analyzer machine to highlight “interesting” traffic. See section 4.2.7.2.

4.1.8 Set Crontab and System Start-up Files.

The script sensor_driver.pl is the main controlling process of the sensor. It should be run
once per hour to end the previous hour’s tcpdump process and start the next one. That
process is driven from the system crontab, a mechanism under Unix/Linux for starting pro-
cesses at specific times. The SHADOW release package contains a file /usr/local/SHADOW-
1.7/sensor/sensor_ crontab which contains:

1 #
2 # SHADOW Release 1.7
3 # Last Modified 3 Jul 2001

13

4 %

5 # Written by Bill Ralph <RalphWD@nswc.navy.mil>

6 #

7 # Crontab for a tcpdump Sensor.

8 #

9 # Insure system clock is consistent.

10 # If this is not on the internet, need a standard time source.
11 #

12 17 23 * * * /usr/bin/ntpdate time-a.nist.gov

13 #

14 # The next command insures that the hardware clock of a PC is reset
15 # to the time that the previous command set the Operating System
16 # time to. Only meaningful for Linux or Intel x86 systems perhaps.

17 #

18 18 23 * * * /sbin/hwclock --systohc

19 #

20 # The startup of the SHADOW sensor driver, once per hour.
21 #

22 0 * * * x /usr/local/SHADOW/sensor/sensor_driver.pl std > /dev/null 2>&1

Line 12 uses a Network Time Protocol (NTP) process (ntpdate), at 11:17 PM each evening
to fetch the current time from a reliable time server and set the system clock to that time.
It is important that the sensor and analyzer have close to the same time on their respective
system clocks. In fact, it may prove to be useful to have your site firewall synchronized to
the same time. Line 18 resets the hardware clock to the value of the system clock at 11:18
PM each evening. Line 22 starts the sensor driver.pl script at the zero-th minute past each
hour.

After site customization, the sensor nit.sh script in the distribution should be moved. The
variable SHADOW _PATH in that file needs to be reset to the location into which your
SHADOW package was loaded. Then, copy that file into the /etc/rc.d/init.d subdirectory
with:

1. ca /usr/local/SHADOK/sensor
2. cp sensor_init.sh /etc/rc.d/init.d/sensor

3. chkconfig --add sensor
This will insure that the SHADOW tcpdump process will restart after each system re-boot.

4.1.9 Protect Your Sensor.

Strip the system of all network services except SSH. On Red Hat Linux 7.1, this involves re-
moving all services from /etc/zinetd.confand either removing all the files in the /etc/zinetd.d
directory, or adding the line “disable = yes” to each. The tcpwrappers system is furnished

14

with Red Hat Linux as an additional security mechanism. Tcpwrappers allows you to put ac-
cess control lists on the various services that are allowed to connect to your system. Since the
sensor needs only the SSH service to connect, the /etc/hosts.allow file should contain some-
thing like the following, where 172.16.77.1/255.255.255.255 is replaced with the IP address
and mask of your analyzer:

#

hosts.allow This file describes the names of the hosts which are
allowed to use the local INET services, as decided

by the ’/usr/sbin/tcpd’ server.

#

#To permit access from specific hosts only:

sshd: 172.16.77.1/255.255.255.255: ALLOW
sshdfwd-X11: 172.16.77.1/255.255.255.255: ALLOW
ALL: ALL: DENY

The sensor may be vulnerable to compromise if it resides outside your firewall. You do not
want to make it easy to compromise, and you certainly don’t want anything on this machine
to give away secrets about the rest of your network. In the SHADOW release package, and
included as Appendix C is an example sensor_rc.iptables file which may be used to protect
the SHADOW sensors at your site. Customize the first part with the names of the active
and passive Ethernet interfaces, and the name or sub-net of your analyzer(s). The script
will allow IP communications on the SSH port between the analyzer(s) and the sensor, and
only those other services that may be necessary, such as DNS. It will block and log all other
attempts to connect to the sensor. It will also add a layer of invisibility to your passive
Ethernet interface, in that it prohibits ANY packets from being sent out from that interface.

4.1.10 Locate Your Sensor.

At this point, the sensor is pretty much configured, at least until the analyzer is ready to
connect. The sensor should be moved to the location in the network at which you want the
IP traffic to be captured. The invisible interface should be placed on a hub or the span port
of a switch directly outside your firewall if you want to see who is knocking at your door,
or directly inside if you want to see who got through the firewall. Traditionally, the area
outside the firewall is called a DMZ (for De-Militarized Zone). You may want two sensors,
one outside and one inside to measure the effectiveness of the firewall.

Note: If you connect your sensor to a regular switch port, you will see no traffic except
broadcast traffic on the network segment on which your invisible interface is
placed. Consult your local neighborhood networking guru for help in setting up
a “span” port to allow promiscuous collection of IP packets.

The sensor is ready, the next step is to build the analyzer.

15

4.2 How to Build a SHADOW Analyzer.

4.2.1 Analyzer Hardware Requirements.

The SHADOW analyzer machine is intended to be the workhorse of the SHADOW system.
Possibly located in a DMZ, the sensor will be capturing packets to disk. The sensor should
be “dumb” so that if it is compromised, the bad guys won’t automatically find information
about the entire network. The sensor should be untrusted, so a compromise won’t provide
a clear path to the inside. The sensor is strictly limited to data collection and configured to
accept SSH connections only from the analyzer. The analyzer initiates those connections,
retrieves the raw data files, cleans up the sensor’s disk space, and provides a remote channel
for sensor maintenance. The analyzer takes the raw data, filters it to produce web pages
populated with “events of interest,” serves those web pages via Apache, provides tools for
analysts to search for more information about those events and for building and sending

incident reports. So the faster and more powerful you can build your analyzer, the better
off your SHADOW installation will be.

Note: The question is frequently raised about building a single box to act as both
sensor and analyzer. Of course, it’s possible. But remember, you are building an
intrusion detection system to enhance your network security. You don’t really
want your intrusion detection system to add security risks. The analyzer has a
lot of software installed on it, and it may have trust relationships that put other
machines inside your firewall at risk. With separate sensors and analyzers, a
compromised sensor adds very little security risk to your network. With them
combined, the risk is significantly greater.

The CPU should be the fastest you can afford. Machines with ratings of 350-800 MHz have
been used with great success. Of course, the 800 MHz performs significantly better. Since
Linux can now handle larger memories, the more memory your analyzer has, the better! Fast
ample disk storage is the topmost priority for the SHADOW analyzer. It may be worthwhile
to consider constructing a RAID system to hold the archives of raw data. It is possible to
split up the analyzer work over multiple machines. Be sure that the data access is as fast as
possible; raw data searches are extremely I/0O intensive. Your analyzer may be a full featured
workstation, with a sophisticated video card, sound card, and all the bells and whistles, if
it is to be used as the primary analysis workstation. You may lower its workload by forcing
your analysts to connect to the analyzer via browser, so a high performance video card in
the analyzer is not necessary. This is all necessarily very vague; it depends totally on the
amount of traffic your site sees, how long you want to keep the raw data around, how active
the probers are in examining your site, etc. The cardinal rule for the analyzer hardware is:
the faster the better!

16

4.2.2 Install and Patch the Analyzer Operating System.

Be sure to read section 4.1.2. The SHADOW analyzer in the Red Hat installation pro-
cess terminology is a server, that may be used as a workstation as well. So the “custom”
configuration choice is still the best during that installation phase.

During the partition dialog, keep the following in mind. The analyzer fetches data files
from the sensors, uses them to generate the web pages, and saves them for use in searches.
That means that your analyzer must hold the raw data files from all your sensors and for
as long as you want to be able to search it. Keep in mind the points made in section 4.2.1,
the analyzer requires fast and commodious disk resources. How you partition the disk is a
matter of personal preference, given the analyzer requirements and the numbers and sizes of
your disk devices.

At the point where the OS install procedure asks about selecting packages to install, make
sure to include Apache, iptables, XFree86, Gnome and/or KDE. Be sure to verify that Perl
and the development tools are also included. You can exclude the risky stuff you shouldn’t
use for security reasons: rlogind, rshd, rexecd, ftpd, tftpd, linuzconf, telnetd, etc.

After the operating system and basic utilities are installed, go to Red Hat Updates http:
//updates.redhat.rpm/ and download the updates for your version of the distribution.
These are the patches, including security fixes, to the system and utilities that have been
made since the distribution was released. IT IS VERY IMPORTANT TO INSTALL
THESE FIXES AND TO PERIODICALLY MONITOR THE SITE FOR AD-
DITIONAL ONES!!!! Computer and network security present a constantly changing
environment, if you assume that your are up to date with your security, someone out there
is working diligently to prove you wrong. Once you've collected all the RPMs (Red Hat
Package Manager, the files in which Red Hat furnishes its software), into a directory, use the
rpm command to update your operating system:

rpm -Fvh *.rpm

Note that you should not fetch and apply updated RPMs for the kernel. The kernel will be
built and customized to your hardware in step 4.2.3 below.

4.2.3 Build a Custom Analyzer Kernel.

In step 4.1.3 above, a custom kernel was built for the sensor. The objective was to configure
it such that only those software components which are absolutely necessary on the sensor
are included in the kernel. The operating system on the sensor is not expected to do much;
keep tcpdump running to collect and save the raw data files. The analyzer is a different

17

story. It fetches data and runs scripts to produce and serve web pages. It also provides tools
to allow searches of the raw data and performs maintenance on the sensor. Nevertheless, it
makes sense to optimize the kernel and eliminate those drivers for which you don’t have the
hardware.

Note: This section is nearly a duplicate of 4.1.3. If you got it there, you may not need
it here.

To optimize the performance of the Linux kernel for your specific hardware, build a custom
kernel. The latest version of the Linux kernel should be downloaded from Kernel.org www.
kernel.org to insure that it has the latest fixes and capabilities.

Here are the steps to build a custom kernel:

. Download the latest kernel, e.g. linuz-2.4.9.tar.gz.
. rm /usr/src/linuz
. cd /usr/src; tar zvfz /some/path/linuz-2.4.9.tar.gz

1
2
3
4. In -s linuz-2.4.9 linuz
5. ed /usr/src/linux

6

. make menuconfig (or make zconfig <if using X Windows)

At this point, a menu will appear that presents you with all the possible hardware and
software configurations. Answer 'N’ to all hardware not on your system. Answer 'N’ to all
software unnecessary for your analyzer, e.g. amateur radio, telephony, ISDN, etc. When you
complete your configuration, at the end of the menu, click on Exit (Menuconfig) or “Save
and Exit (Xconfig), which creates a file “.config” containing all the configuration options
you selected during the process. See B for a copy of a .config file that specifies the kernel
configuration for a typical analyzer.

Once your configuration file matches your hardware and desired software, build
the new kernel and put it into place by:

1. cd /usr/src/linuz
make dep
make bzImage

make modules

O

make modules_install

18

cp System.map /boot/System.map-{$VERSION}
cp arch/i386/boot/bzImage /boot/vmlinuz-{$VERSION}

Edit the file /etc/lilo.conf to include the new kernel you just built.

© 0N

Run /sbin/lilo to re-install the boot loader with the new kernel information.

10. Re-boot your system to see if the new kernel will run.

Where $VERSION is the version of the kernel you are building, e.g. 2.4.9.

Be sure to study the document on how to build a Linux kernel, which can be found at:
Kernel- HOWTO http://www.linuxdoc.org/HOWTO0/Kernel-HOWTO.html.

4.2.4 Create SHADOW User Account.

On the analyzer, the Apache web server should not run as a privileged user, so a new user
account, should be created to be the owner of the SHADOW data files, the Apache httpd
processes, and the web tree. More details are spelled out in the section 4.2.6.1. The name
“shadow” seems to fit this user.

To create the “shadow” user. As root:

useradd -c ‘“Lamont Cranston, the SHADOW” -u 666 -d /home/SHADOW shadow

By default, Red Hat Linux automatically creates a group with the same name as the user,
and bash as the default shell. Do not give “shadow” a password. As an additional security
measure, no one should be able to log in directly to the analyzer as “shadow.” Later, in
section 4.2.6.5 “shadow” will be given some OpenSSH keys with with to communicate with
the sensors and fetch their data.

4.2.5 Unpack the SHADOW-1.7 Software

The SHADOW software comes in a gzipped tarball: SHADOW-1.7.tar.gz. Choose a location
for unpacking the software. “/usr/local/SHADOW” might be a good place, so you can
unpack the tarball in that location:

1. mkdir -p /usr/local/SHADOW

2. cd /usr/local/SHADOW
3. tar zvfz /wherever/you/stuck/the/tarball/SHADOW-1.7.tar.gz

19

4.2.6 Install the Accessories.

Inside the SHADOW-1.7 directory is an accessories subdirectory which contains the pre-
packaged accessories that SHADOW depends on to work. They are collected in subdirectories
rpms, tarballs, patches, and specs. The specs directory contains spec files for tcpdump and
OpenSSH. A spec file is the RPM specification file for building RPMs. The patches directory
contains a patch to tcpdump as explained in section 4.2.6.4. Also included in the patches
directory is a patch to a generic Apache httpd.conf file to assist in configuring Apache. The
following subsections outline the steps necessary to install each of the accessories.

4.2.6.1 Install and Configure Apache. Apache is furnished with the Red Hat dis-
tribution. It will be installed with the rest of the operating system if you select it during the
installation process. You can install the mod_ ssl and mod_ perl modules as well during in-
stallation to assist Apache. Mod_ ssl adds the processing necessary for Secure Sockets Layer,
and mod_ perl adds perl processing to the Apache daemon itself, thus speeding up the execu-
tion of CGI scripts written in Perl. Apache needs some SHADOW specific configuration. In
the /usr/local/SHADOW-1.7/accessories/patches directory is a file called httpd_ conf.patch
created by diff that illustrates the differences between a SHADOW configured httpd.conf
file and the one released with Red Hat Ver. 7.1. The file lists three lines of context before
and after the actual differences. Given that this file is not too out of date with the version
of Apache you have, you can modify your Apache configuration file with the steps:

cd /usr/local/SHADOW/accessories/patches
Manually edit the htipd_conf.patch file to use your IP addresses and domain names.

cd /etc/httpd/conf

e

patch -pl < /usr/local/SHADOW/accessories/patches/httpd_conf.patch

If the patch fails, you can manually update your /etc/httpd/conf/httpd.conf by reading it
and changing the lines corresponding to the lines in the patch file. Be sure to specify
your local addresses and domain names in the actual hitpd.conf file. Restart Apache with
/ete/re.d/init.d/httpd restart.

4.2.6.2 Installthe SHADOW Home Web Page. The httpd.conf file installed in sec-
tion 4.2.6.1, by default, expects the SHADOW home page to be located in /home/shadow/html.

Create the home page by:

1. mkdir -p /home/shadow/html/tcpdump_results

20

cd /usr/local/SHADOW/httpd/home
cp * /home/shadow/html

cp .htaccess /home/shadow/html

G N

chown -R shadow:shadow /home/shadow

4.2.6.3 Install the Compress::Zlib Perl Module. The sensor runs gzip to compress
the raw data files as they are being collected. After the analyzer has fetched the data files
it must gunzip them before running tcpdump with the filters to generate the web pages.
The filters can get so complicated that tcpdump can’t parse them all at once. In that case,
the filters must be split into smaller files. With SHADOW-1.7, the fetchem.pl script was
modified to unzip the raw data file once and feed the output to multiple tcpdump processes
each running a different filter file. Another speed-up can be obtained by installing the
Compress::Zlib Perl module. This module makes gunzip available to Perl as a subroutine
call rather than a call to the operating system to spawn a separate process to run gunzip.
However, not every SHADOW user has the experience or knowledge to install a Perl module,
so the scripts were programmed to detect if the Compress::Zlib module is available, and use
it if it is If it is not installed, the Perl scripts will use the system spawn method of running
qunzip.

To install the Compress::Zlib module:
cd /usr/local/SHADOKW/accessories/tarballs
tar zvfz Compress-Zlib-1.11.tar.gz

cd Compress-Zlib-1.1.1

Read the README file: more README

perl Makefile.PL

make

make test

PN O W

If no errors have occurred, then type make install and you are done. If you got errors, search through
the README for clues as to how to recover.

4.2.6.4 Install Tcpdump on the Analyzer. See the section 4.1.5 for information
about why it is necessary to install a different version of tcpdump than the one furnished by
Red Hat.

Install tepdump with the following command:

cd /usr/local/SHADOW/accessories/rpms
rpm -Uvh --force tcpdump-3.6.2-wdr2.1386.rpm

The source, patches, and spec files are also furnished, so non-Red Hat Linux users can
compile and install tcpdump as well.

21

4.2.6.5 Install and configure OpenSSH. SHADOW needs a mechanism for the an-
alyzer to contact the sensor and fetch the data files that the sensor creates. But because the
sensor may be located in a DMZ, outside the protection of the site firewall, that transport
mechanism required some security. Otherwise, anyone who might be able to plant a sniffer
in the DMZ would be able to pick up passwords for accounts on the sensor. And because the
data being fetched by the analyzer is a snapshot of the network traffic for the whole site, it
would be risky to transport that data in the clear. SSH was the mechanism chosen to answer
to this problem. The SSH protocol encrypts the traffic between communicating machines us-
ing sophisticated battle-proven Open Source encryption algorithms. In addition, SSH adds
a layer of authentication between client and server to protect against spoofing. For rea-
sons alluded to in section 4.1.6, OpenSSH is the chosen SSH implementation for SHADOW.
Included in the SHADOW package is OpenSSH version 2.9.9pl in an rpm. Install it by:

cd /usr/local/SHADOW/accessories/rpms
rpm -Uvh --force /openssh-2.9.9p1-wdrl.<386.rpm

If it balks, you may have to uninstall the version of OpenSSH included with
Red Hat Linux:

1. rpm -e openssh openssh-server openssh-clients openssh-askpass

2. rpm -e openssh-askpass-gnome

As part of the installation, OpenSSH generates three host keys /etc/ssh/ssh_host_key,
/etc/ssh/ssh_host_rsa_key, and /etc/ssh/ssh_host_dsa_key. These are the host’s private
keys; the public key counterparts are /etc/ssh/ssh_host_ key.pub,

/etc/ssh/ssh_host_rsa_ key.pub, and /etc/ssh/ssh_host_ dsa_ key.pub, respectively.

The public host keys on the sensors need to be copied to the /etc/ssh
directory on the analyzer as follows. (There are other mechanisms for getting
the sensors’ public keys to the analyzer, this is one example.)

1. Copy /etc/ssh/ssh_host_key.pub on the sensors to /etc/ssh/ssh_known_hosts on the analyzer.
This is for SSH protocol version 1 compatibility, and is largely deprecated now because of identified
security problems.

2. Copy both /etc/ssh/ssh_host_rsa_key.pub and /etc/ssh/ssh_host_dsa_key.pub on the sensors
to /etc/ssh/ssh_known_hosts2 on the analyzer. This is for SSH protocol version 2, which
has been found to be more robust. The ssh_host_rsa_key is generated using the RSA
algorithm and ssh_host_dsa_key was generated using the DSA algorithm. See [SSH].

3. On each of the sensors, insert a blank floppy into your floppy drive.

4. ca /etc/ssh

22

cat ssh_host_key.pub > /tmp/ssh_known_hosts

cat ssh_host_dsa_key.pub ssh_host_rsa_key.pub > /tmp/ssh_known_hosts2

cd /tmp

© N o

tar cvf /dev/fd0 ssh_known_hosts ssh_known_hosts2

On the analyzer:

1. Insert the floppy.
2. cd /etc/ssh
3. tar xvf /dev/£d0

Note: Here’s a quick description of why this is needed. As part of the SSH protocol, an
incoming connection request is received by the sensor’s sshd daemon which then
transmits a copy of the sensor’s public key to the originator of the connection
request, the analyzer. The analyzer compares the public key he receives from
the sensor to a stored value kept in the /etc/ssh/ssh_known_ hosts2 file. If they
match, the analyzer is sure he is connected to the correct machine. Otherwise,
someone could be attempting to impersonate the sensor or intercept communi-
cations between the sensor and analyzer. This mechanism, called “public key
authentication,” decreases the possibility of that happening.

In section 4.2.4 above, a user account named “shadow” was created to be the owner of the
processes and files within the SHADOW and Apache systems. Shadow now needs to have
a private/public key pair created so that the shadow account is allowed to connect from
the analyzer to the sensors to fetch the raw data files. The analyzer host itself is known to
the sensor by the contents of the ssh_known_hosts and ssh_known_ hosts2 files that were
created above. Generation of shadow’s keys is done by:

Become root on the analyzer then “su - shadow” to become the “shadow”
user.

]_. mkdir .ssh
2. chmod 600 .ssh

3. /usr/bin/ssh-keygen -b 1024 -t rsal -f .ssh/id_rsal.
When prompted for a passphrase, enter return and repeat.

4. /usr/bin/ssh-keygen -b 1024 -t dsa -f .ssh/id_dsa.
When prompted for a passphrase, enter return and repeat.

5. /usr/bin/ssh-keygen -b 1024 -t rsa2 -f .ssh/id_rsa2.
When prompted for a passphrase, enter return and repeat.

S

cd .ssh

7. cat id_rsal.pub > authorized_keys

23

8. cat id_dsa.pub id_rsal.pub > authorized_keys2
9. Insert a floppy.

tar cvf /dev/fd0 authorized_keys authorized_keys

On the sensor:

1. Insert the floppy.
cd /root

mkdir .ssh

chmod 600 .ssh

cd .ssh

tar zvf /dev/fd0

SOt N

Steps 3, 4, and 5 above generate SSH keys for user shadow. Step 3 generates an SSH
protocol 1 password; step 4 generates an SSH protocol 2 password using the DSA algorithm;
and step 5 generates an SSH protocol 2 password using the RSA algorithm. All three keys
are not needed; in the process of migrating from protocol 1 to 2, so a protocol 1 key pair
is retained for compatibility with older sensors. You will note that there is no passphrase
on the shadow’s private keys. As you’ll see in section 4.2.7, the SHADOW scripts will be
run as user shadow from an automated crontab script each hour. If the shadow private SSH
key has a passphrase defined, then the script will halt to await entry of that passphrase to
complete each connection from the analyzer to the sensor. By defining an empty passphrase,
that situation is avoided, at a small additional risk. Creating the user shadow without the
ability for anyone to log in directly as shadow, lessens that risk somewhat. Your analyzer
will need to be protected, because user shadow on your analyzer has permission
to log in as root on your sensors without a password.

SSH is particularly picky about permissions on its files and directories. Make sure that the
.ssh directories, and all files contained in those directories, in /root and /home/shadow are
owned by root and shadow respectively and have permissions 700 on the directories and 600
on the files. In step 4.2.6.6 below, the SSH connection between the analyzer and the sensors
will be tested to insure that the OpenSSH software is configured and operating correctly.

Note: Here’s a high level explanation of the use of “shadow’s” SSH keys. On the sensor,
the file /root/.ssh/ssh_ authorized_ keys2 contain copies of the public keys of any
users allowed to connect as root to the sensor. Remember that private/public
key encryption depends on the fact that a message encrypted with one half of a
key pair can ONLY be decrypted by the other key in that pair. So if the sensor
can decrypt a message using shadow’s public key in his file, it could only have
been encrypted by the corresponding private key, the one belonging to shadow
on the analyzer.

Once again, further clarification of the SSH process can be obtained in the book cited in

Ref. [SSH].

24

4.2.6.6 Test the Analyzer to Sensor Connection. Let’s review. At this stage in
the installation process, a two computer SHADOW system is under construction, consisting
of a sensor and an analyzer. The shadow account on the analyzer will automatically run
an hourly script, (see section 4.2.9), to connect to the sensor and fetch the previous hour’s
gzipped raw tcpdump data file, then run some filters on the data and generate a web page
of the “interesting” events. Obviously, one of the crucial aspects of this relationship is the
ability of the analyzer to connect to the sensor, fetch a file, and run some commands on
the sensor. OpenSSH has been chosen for our transport mechanism. OpenSSH components
have been installed on both machines. A “shadow” user account has been created on the
analyzer. Some passphrase-free SSH keys for that account have been generated, with the
public keys copied to the sensor. Now before the SHADOW system can become functional,
the connection from the shadow account on the analyzer to the sensor must be tested and
verified operational.

1. Become root on the analyzer; then type: su - shadow to become shadow.

2. Type: ssh -v -1 root sensor0l.goodguys.com , where sensorl.goodguys.com is the name of
the sensor to which to connect. The -v option will produce a lot of debugging
information, verbosly documenting each step through the SSH protocol. Where it
finds problems, it will print messages that should help in solving them. If you get the
sensor’s root login prompt, congratulations! You have successfully tested and verified
the ability of the analyzer to connect to the sensor. If not, proceed with the next
debugging step.

3. If this attempt fails, look at the permission flags on the sensor of the /root/.ssh and
the /etc/ssh directories. The directories themselves should be owned by root with the
following permissions:

1ls -1d /root/.ssh /etc/ssh

drwxr-xr-x 2 root root 1024 Mar 28 13:48 /etc/ssh

drwx------ 2 root root 1024 Mar 1 11:37 /root/.ssh
The files should look like:

1ls -1 /root/.ssh

“IW-----=- 1 root root 1387 Feb 21 15:01 authorized_keys
-rW------- 1 root root 1701 Feb 21 15:02 authorized_keys2
-rW------- 1 root root 651 Sep 20 1999 known_hosts
-TW--——-—- 1 root root 512 Sep 20 1999 random_seed

25

1ls -1 /etc/ssh

T We—m————— 1 root
-TW-Yr--T-- 1 root
-TW------- 1 root
-TW-Y--T-- 1 root
-rW------- 1 root
-rW-r--Ir-- 1 root
-rW------- 1 root
-YW-Y--Y-- 1 root
-YW-Y--Y-- 1 root
-TW-Y--T-- 1 root
Y Wem————— 1 root
Y We—m—m——— 1 root

After you reset the permissions on the files and directories, try step 2 again.

4. The final recommendation for debugging the analyzer to sensor connection is to go to
the sensor and type sete/rc.d/init.d/sshd stop. Then try sfusr/svin/ssna -4, which will start
the sshd daemon in debug mode. By attempting the connection from the analyzer of
step 2 above, the sshd daemon on the sensor will write debugging messages similar to
those of the ss» -» shown in step 2, but from the perspective of the other end of the

root

root

root

root

root

root

root

root

root

root

root

root

26287
1042
668
615
542
346
887
210
2168
814
512
1695

Mar
Mar
Jul
Jul
Aug
Aug
Mar
Mar
Jul
Mar
Jul

Mar

28
20

13
13

13:17
09:30
2000
2000
1998
1998
14:48
14:48
2000
12:11
2000
09:33

primes

ssh_config
ssh_host_dsa_key
ssh_host_dsa_key.pub
ssh_host_key
ssh_host_key.pub
ssh_host_rsa_key
ssh_host_rsa_key.pub
ssh_known_hosts
ssh_known_hosts2
ssh_random_seed

sshd_config

connection. This information should help debug connections that fail.

5. If all else fails, dash to your local bookstore and purchase a copy of [SSH].

4.2.6.7 Install and Configure NMAP.

One of the tools available on the SHADOW
toolbar allows the analyst to run nmap to obtain some reconnaissance about an IP address
or system name of interest. If it’s a system within your domain, you can ascertain what
ports are open to help identify why that particular system is a target of outside probes. It
is not advisable for you to use nmap on machines outside your purview. Nmap is a valuable

tool, but it can be disruptive to some systems. Use it with great care.

Here is how to install the nmap software from the tarball:

tar xvfz nmap-2.53.tgz
cd nmap-2.53
./configure

make

su root

NPOUE WD

make install

cd /usr/local/SHADOW/accessories/tarballs

See section 4.2.7.4.3 for configuring the nmap.cgi script to use nmap.

26

4.2.6.8 Configure SUDO. SUDO (superuser do) is a command furnished with Red
Hat Linux in their Powertools collection. This command allows an ordinary user to execute
a particular command or set of commands with root privileges. It provides extensive logging
of the account and the command it attempts to use. Since the user “shadow” is the owner of
the httpd process, when someone clicks the “NMAP” button on their SHADOW toolbar, the
nmap.cgi script is run as shadow. In order to utilize all the power of nmap, root privileges
are required. Sudo gives shadow root privileges to execute the nmap command.

Here is the configuration of the /etc/sudoers file:
sudoers file.

#

#

This file MUST be edited with the ’visudo’ command as root.

#

See the man page for the details on how to write a sudoers file.
#

Host alias specification
User alias specification
Cmnd alias specification

User privilege specification
root ALL=(ALL) ALL
shadow analyzer=NOPASSWD: /usr/local/bin/nmap

The last line of the file gives shadow permission to execute “ /usr/local/bin/nmap” without
providing a password. Sudo provides a lot more capability that is needed for SHADOW, see
the man page and [Unix Admin]. To prevent just anyone from using nmap, Apache must
be configured to require authentication for users who click on the NMAP key, see section
4.2.7.4.3.

4.2.7 Install and Configure SHADOW software.

New to SHADOW Version 1.7 is a system wide configuration file. An example is furnished
in the distribution tarball in /usr/local/ SHADOW /etc/SHADOW.conf:

1 # OSHADOW master configuration file. Used by the Perl scripts to orient
2 # themselves.

3 #

4 # /usr/local/etc/SHADOW.conf - SHADOW Version 1.7

5 # Last changed 21 Jun 2001

6 #

7 $SHADOW_PATH = "/usr/local/SHADOW";

8 #

9 # The paths to the SHADOW sub-commands are here. Modify these if you want to
10 # specify a path different than "which" will find.

11 #

12 $SSH_CMD = ‘which sshf;

27

13 $SCP_CMD = ‘which scp‘;

14 $TCPDUMP_CMD = ‘which tcpdump®;

15 $GUNZIP_CMD = ‘which gunzip‘;

16 $GZIP_CMD = ‘which gzip‘;

17 chomp ($SSH_CMD, $SCP_CMD, $TCPDUMP_CMD, $GUNZIP_CMD, $GZIP_CMD);

18 #

19 # Paths to various SHADOW components.

20 #

21 $SHADOW_SENSOR_PATH = "$SHADOW_PATH/sensor";

22 $SHADOW_SITE_PATH = "$SHADOW_PATH/sites";

23 $SHADOW_FILTER_PATH = "$SHADOW_PATH/filters";

24 $SHADOW_CGI_PATH = "$SHADOW_PATH/httpd/cgi—bin";

25 $SHADOW_RAW_DATA_PATH = "/home/shadow";

26 $SHADOW_WEB_PAGES_PATH = "$SHADOW_RAW_DATA_PATH/html/tcpdump_results";

27 #
28 $SHADOW_REL_WEB_PAGES_ROOT = "/tcpdump_results";
20 #

30 $SHADOW_IR_SEQNO_FILE = "$SHADOW_CGI_PATH/IR_seq";
31 $SHADOW_IR_DATA_FILE = "/var/spool/SHADOW/Incident-Reports";

This is a Perl header file, (normally a “.ph”) file that is read by every one of the SHADOW
analyzer scripts to access some globally defined parameters. The file, or a link to it, is
expected in the location /usr/local/etc/SHADOW.conf. You can tailor this file to reflect
where your SHADOW files are stored. Line 7 defines where you want SHADOW to look for
the unpacked tarball; where the scripts are stored. Lines 12-16 define the locations of the
commands ssh, scp, tepdump, gunzip, and gzip. As written above, the script will find the
commands providing they may be found in the paths specified by your PATH environment
variable. If you have located these commands in non-standard places for some reason, insert
the paths to the commands here. For lines 21-31, various subdirectories of the SHADOW
distribution are defined, where the SHADOW tarball places them. If you move any of these
subdirectories, be sure to change /usr/local/etc/SHADOW.conf to let the SHADOW scripts
find the right paths or create appropriate symbolic links.

Note: The /usr/local/etc/SHADOW.conf file is NOT used by the sensor scripts, for
this version of SHADOW. For your sensors, you need not worry about building
this file. See section 4.1.7.

4.2.7.1 Create the Required Directories. When the SHADOW tarball was unpacked,
it created the necessary subdirectories under the /usr/local/SHADOW directory. Other di-
rectories need to be created and ownership given to shadow:

1. mkdir -p /home/shadow/{SITES} [or the value of $SHADOW_RAW_DATA_PATH from /usr/local/etc/SHADOW.conf]

for each of your sensors, (a sensor = a site) to hold the raw data on the analyzer.

2. mkdir -p /home/shadow/html/tcpdump_results/{SITES} [or the value of $SHADOW_WEB_PAGES_PATH from

/usr/local/etc/SHADOW.conf] for each of your sensors to hold the web pages.

28

3. chown -R shadow:shadow /home/shadow

4. mkdir -p /var/spool/SHADOW/Incident-Reports [or the value of $SHADOW_IR_DATA_FILE from
/usr/local/etc/SHADOW. conf]

5. chown shadow:shadow /var/spool/SHADOW/Incident-Reports

6. mkdir /usr/local/SHADOW/filters/{SITES} [or the value of $SHADOW_FILTER_PATH from
/usr/local/etc/SHADON . conf]

7. chown -R shadow:shadow /usr/local/SHADOW

4.2.7.2 Configure the Individual Sensor (Site) Configuration Files. In the sub-
directory /usr/local/SHADOW /sites, an entry needs to be configured for each sensor to
which the analyzer is going to regularly connect. Configure the entries in this file to reflect
information particular to each sensor. The “Site” that is used in the name of the file and
the subdirectory that the raw data and web pages are stored is some word that you create
to identify the particular sensor that is the source of the data, such as perhaps, the sensor’s
name. The sample Sitel.ph furnished in the SHADOW distribution is included:

Variables needed by the analyzer scripts. Tailor this file
to define the paths for different sensor sites.

#

Site.ph - SHADOW Version 1.7

Last changed 9 Jul 2001
#

use POSIX qw(strftime);

use Time::Local;

#

The ’$SITE" name is a name used to identify a sensor subdirectory. This name
will be used to create subdirectories under the analyzer "/LOG" directory
and the home page of the web pages that SHADOW creates to display the data.
#

->$SITE="Sitel";

#

Include a list of IP network addresses that are considered "inside" your site.
(Not currently used in SHADOW-1.7)

#

->@SITE_IP=("172.16.31", "192.168");

#

Put here the name of the machine on which the SHADOW sensor software is

located. The analyzer fetches the raw data from the sensor.

#

->$SENSOR="sensor01.goodguys.com";

#

Put the name of the machine which runs Apache to serve up your SHADOW

generated web pages.

#

->$WEB_SERVER="wuww. goodguys.com";

#

Change the following line to reflect the directory on your sensor in which
the raw sensor data is stored.

29

#

->$SENSOR_DIR="/L0OG";

#

The following line reflects the directory on your analyzer machine

into which the raw sensor data is fetched. The variable $SHADOW_RAW_DATA_PATH
is defined in /usr/local/etc/SHADOW.conf.

#

$ANALYZER_DIR="$SHADOW_RAW_DATA_PATH/$SITE";

#

The following line reflects the directory on your analyzer machine where

SHADOW will create the web pages which hold the filtered data. The variable

$SHADOW_WEB_PAGES_PATH is defined in /usr/local/etc/SHADOW.conf.

#

$0UTPUT_WEB_DIR="$SHADOW_WEB_PAGES_PATH/$SITE";

#
The following variable reflects the relative path from the DocumentRoot

variable defined in the Apache configuration files to the actual html files.

The variable $SHADOW_REL_WEB_PAGES_ROOT is defined in

/usr/local/etc/SHADOW.conf.

#

$URL_OUTPUT_DIR="$SHADOW_REL_WEB_PAGES_ROOT/$SITE";

#

The following line reflects where the filters for the site $SITE are

stored. The variable $SHADOW_FILTER_PATH is defined in

/usr/local/etc/SHADOW.conf.

#

$FILTER_DIR="$SHADOW_FILTER_PATH/$SITE";

#

The SCAN_THRESHOLD is the number of different IPs that a "foreign" machine

can contact before SHADOW lists that foreign machine as a possible scanner.

Change it to reflect your preference.

#

$SCAN_THRESHHOLD = "7";

#

Set the following variable to the number of days you want to keep the

raw data files on your sensor’s disks before the cleanup.pl script removes

them. It depends on the sizes of your files, the amount of sensor disk space,
and your taste.
#
$

CLEAN_DATE = 2;

You must create one "Site.ph" file for each sensor from which your analyzer will obtain data.
Not much needs to be changed in the file once the system wide /usr/local/etc/SHADOW.conf
has been created. You can tweak the parameters in these sensor specific files once the system
is fully operational.

4.2.7.3 Configure the Tcpdump Filters.

In the /usr/local/SHADOW /filters directory are seven files: filter.getall.doc,
goodhost.filter.doc, icmp.filter.doc, ip.filter.doc, tcp.filter.doc, and udp.filter.doc. These are
the “documented” filter files. You need to edit each file and replace the generic IP addresses
with the IP addresses of your particular site. There is one file for each IP protocol. The
goodhost.filter.doc covers specific purpose machines in your site, e.g. your mail server, or

30

your web servers. The filter.getall.doc is used by the find_ scan.pl script to identify those
IP addresses considered to be “inside” your site. After you have edited each file, strip the
comments out by using the comment_strip script, for example:

/usr/local/SHADOW/comment_strip ip.filter.doc > /usr/local/SHADOW/filters/{SITE}/ip.filter
/usr/local/SHADOW/comment_strip icmp.filter.doc > /usr/local/SHADOW/filters/{SITE}/icmp.filter
/usr/local/SHADOW/comment_strip tcp.filter.doc > /usr/local/SHADOW/filters/{SITE}/tcp.filter
/usr/local/SHADOW/comment_strip udp.filter.doc > /usr/local/SHADOW/filters/{SITE}/udp.filter
/usr/local/SHADOW/comment_strip goodhost.filter.doc > /usr/local/SHADOW/filters/{SITE}/goodhost.filter
/usr/local/SHADOW/comment_strip filter.getall.doc > /usr/local/SHADOW/filters/{SITE}/filter.getall

A set of filters must be configured for each of the sensors (sites) to which the analyzer will
connect. The filters may differ as to what kind of traffic to watch for. For example, you may
want a sensor outside your firewall to watch for incoming telnet connections, while you may
want another one inside to ignore them. After each filter is created, you can verify that the

tepdump command will parse it by:

tcpdump -i eth0 -n -F /usr/local/SHADOW/filters/{SITE}/XXX.filter

If that command does not give a “parse error,” then the filter will run. Whether it will
put those items you intended on the web page is another matter. The filter files provided
are typical filters that might be used with local modifications. Perhaps the biggest task a
SHADOW analyst has to do is periodically modify the filters to reflect the traffic that is
“normal” at his site in order to isolate the abnormal traffic on the web page as events of
interest. Books have been written to provide assistance in configuring the tcpdump filters.
References [NID] and [Intrusion Signatures| are good ones. Go to www.sans.org for training
in Intrusion Detection and assistance in configuration of “signatures.”

4.2.7.4 Configure the CGI Scripts. In the directory /usr/local/SHADOW /hitpd/cqgi-
bin, are the CGI (Common Gateway Interface) scripts used by the SHADOW system to gen-
erate web pages for the various tools offered for use. Configuration of the scripts included in
the tarball is described in the paragraphs below.

4.2.7.4.1 Configure the compose IR.cgi Script. The script compose IR.cgi is
used to build an Incident Report (IR) and mail copies to interested parties. Below are
excerpts from the file compose IR.cgi, with line numbers. All the lines preceded by “->”
need to be modified to suit your site, changing the name of the company, possibly using
different incident types, etc. This script uses two mail aliases, Obf IRs and Raw_IRs.
Raw_IRs may be defined as a mailing list of folks to receive the raw incident reports with
the actual addresses of the local machines. Obf IRs will then be a list of mail recipients
that receive the same report except that the script /usr/local/SHADOW /obfuscate.pl has

been run on it. That script modifies the IP addresses and domain names within the Incident

31

Report to conceal actual addresses while conveying information about the nature of incident.
When you modify the appropriate lines, be sure to leave the surrounding punctuation intact.

1 #!/usr/bin/perl

2 #

3 # compose_IR.cgi - SHADOW Release 1.7

4 # Last Changed 11 Jul 2001
5 #

6 # Written by: Bill Ralph

7T # <RalphWD@nswc.navy.mil>

32 sub fetch_segno

33 {

34 # Read a file for an IR sequence number for todays date. Do not modify the

35 # file at this point. That will be done when the form is submitted.

36 #

37 # Written by Bill Ralph - 25 Jan 1999

38 #

39 #

40 # Calculate the IR sequence number from todays date.

41 #

42 $todays_date = strftime("%Y/m%d", localtime);
-> 43 $todays_prefix = "GGI-IDR${todays_date}";

44 $todays_seq = "001";

32

54 1}

556 #

56 sub update_seqgno

57 o

58 # Read a file for an IR sequence number for todays date. If it exists,

59 # increment and resave it. If not create the file, create the seq no, and

60 # save it.

61 #

62 # Written by Bill Ralph - 12/29/98

63 #

64 #

65 # Calculate the IR sequence number from todays date.

66 #

67 $todays_date = strftime("%Y/m¥d", localtime);
-> 68 $todays_prefix = "GGI-IDR${todays_date}";

69 $todays_seq = "001";

103 if (!param) {

104 $shadow_seqno = fetch_seqno();
105 print start_form(-target=>’_self’),
-> 106 h3({-align=>CENTER}, "GoodGuys Industries - Network Detection Report"),

33

107 "GoodGuys Report No.: ",

108 textfield(-name=>’rep_num’,
109 -size=>26,
110 -value=>$shadow_seqno),
111 rO,
112 "Actual Addresses Mail Recipients: ",
113 textfield(-name=>’raw_mailto?,
114 -size=>30,

-> 115 -value=>’Raw_IRs),
116 rQO,
117 "Obfuscated Addresses Mail Recipients: ",
118 textfield(-name=>’obf_mailto’,
119 -size=>30,

-> 120 -value=>’0bf_IRs’),
121 p0O),
122 ol({-type=>"1"%},
123 1li("Report Date: $today"),
124 pQO,
125 li("Incident Date: "),
126 textfield(-name=>’inci_date’,
127 -size=>20),
128 pQ,

34

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

1li("Type of Incident: "),

scrolling_list(-name=>’inci_type?’,

-size=>1,

-values=>[

’Denial of Service Attempt ’,

>IMAP Connection Attempt’,

’>Remote Login Attempt’,

>RESET Scan?,

>SYN/RST Scan?,

>FTP Scan?,

>Port Scan?,

>POP3 Scan?,

>SNMP Probe/Scan’,

>RPC/Portmap Connection Attempt’,

>DNS Zome Transfer Attempt’,

>Single System Connection Attempt?,

>S0CKS Ezploit’,

>Informational Report?’,

’Multiple Target/Port Scan or Connection Attempts?,

Network Mapping Attempt?,

>Unknown Probe type?’,

>ICHP Scan?,

35

-> 151 ’DNS Scan?,

-> 1562 >NETBIOS Scan?,
-> 153 >Unknown UDP Event?,
-> 154 >Unknown ICHMP Event?,
-> 1565 >Unknown TCP Event’,
-> 166 ’Possible IP Spoofing Event?,
157 1,
-> 1B8 -default=>’Informational Report?’),
159 rO,
160 1i("Subjects Involved: "),
161 pQ,
162 ol({-type=>"a"},
163 1li("Source: "),
164 textfield(-name=>’inci_source’, -size=>35),
165 r0O,
166 li("Target(s): "),
167 textfield(-name=>’inci_target’, -size=>50,
-> 168 -value=>"(oodGuys Industries Incorporated - Podunk HQ"),
169),
170 pO,
171 li("Location of Detector: "),
172 scrolling_list(-name=>’detector’,

36

173 -size=>1,

174 -values=>[
-> 175 ’Inside Facility Firewall?,
-> 176 ’Inside Facility Perimeter, (Outside Firewall?’,
-> 177 ’Jutside Facility Firewall, Outside Perimeter’
-> 178 1,
-> 179 -default=>’Inside Facility Firewall?),
180 pQO),
206 $inci_source = param(’inci_source?’);
207 $inci_target = param(’inci_target?’);
-> 208 $mail_subject = "$rep_num : ${src_txt}${inci_type} \@ (GoodlGuys.com";
209 $inci_cost = param(’inci_cost?’);
210 $inci_summ = param(’summary’);
211 $inci_summ =~ tr/\r//d;
212 $raw_mail_cmd = "/usr/sbin/sendmail -t -o0i";
213 $obf_mail_cmd = "/usr/sbin/sendmail -t -o0i";

214 # $raw_mail_cmd = "cat > /tmp/raw_mail_$$";

215 # $obf_mail_cmd = "cat > /tmp/obf_mail_3";

216 #

217 # Create an array of lines of our mail message.

218 #

37

219 @lines = split(/\n/, <<"EOF");

220 Subject: $mail_subject

221
-> 222 GoodGuys Indusiries - Network Security Division
-> 223 Network Detection Report

224
-> 225 Phone 000-555-1212

226

-> 227 GGII Intrusion Detection Report No.: $rep_num

228

229 1. Report Date: $today

230 2. Incident Date: $inci_date

231 3. Type of Incident: $inci_type

232 4. Subjects Involved:

233 a. ${src_txt}Source: $inci_source
234 b. Target(s): $inci_target

235 5. Location of Detector: $detector

236 6. Cost of this Incident: $inci_cost
237 7. Summary of Incident and Investigation Results:
238

239 $inci_summ

240

38

-> 241 s**xx* End of GGI Intrusion Detection Report No.: $rep_num *x*xkk

242 EOF

262 #

263 # Insert the "To:" line for the raw and obfuscated mail arrays.

264 #
-> 265 unshift(@lines, "From: The GoodGuys SHADOW Team <shadow|@goodguys.com>");
-> 266 unshift(@lines, "To: §raw_recipients");
-> 267 unshift(@obf_lines, "From: The GoodGuys SHADOW Team <shadow|@goodguys.com>");
-> 268 unshift(Qobf_lines, "To: $obf_recipients");
269 #

270 # Copy the array of uncensored lines to the sendmail command and the

271 # database of Incident Reports we’re saving.

302 #

303 # print the web page to show user the mail was sent.

304 #
305 print
306 a({-name=>’print’, -href=>’javascript:window.print()’},
307 img({-align=>’right’,-src=>’/images/print.gif’,-border=>°0’})),
-> 308 h3({-align=>CENTER}," GoodGuys Industries - Network Security Division"),
309 h3({-align=>CENTER}," Intrusion Detection Report"),

39

310 pQ,

311 hr(Q),
312 center(strong("Phone 000-555-1212")),
313 rQ),
-> 314 center(strong("(¢GII Intrusion Detection Report No.:")," $rep_num"),
315 pO,
316 pO,
344 }

345 print end_html;

4.2.7.4.2 Configure the search.cgi Script. The search.cg: script is the script that is
run when the SEARCH button is selected from the SHADOW tool window. It displays the
form that the analyst fills out to search the raw data files; executes the search and displays
the results back in the search window. Below are excerpts from the file search.cgi, with
line numbers. All the lines preceded by “->” may need to be modified to suit your site.
These changes only affect the strings identifying your sensors so that an analyst can select
the proper sensor data to view on the browser web page, e.g. data from “Sensor01” will
be accessed from the list “Outside Site Perimeter”, etc. You need to adjust the number of
sensors, and how the pull down menu will identify each on the search web page and tools
window.

1 #!/usr/bin/perl

2 #

3 # search.cgi - SHADOW Release 1.7

4 # Last Changed 31 May 2001
5 #

6 use CGI qw/:standard/;

40

10

11

12

13

48

49

50

51

52

53

54

55

56

57

58

59

60

490

use CGI::Carp quw(fatalsToBrowser);

use POSIX qw(strftime);

use Time::Local

use I0::Handle;

do "/usr/local/etc/SHADOW.conf" ||

die("Unable to load SHADOW configuration file: /usr/local/etc/SHADOW.conf.");

%param_info = (

print end_html;

site=> {

param_label => "Which sensor: ",

max_field_size => "8",

param_type => "list",

values

labels => {

"Sensorl"

"Sensor2"

"Sensor3"

1,

=>["Sensorl", "Sensor2", "Sensor3"],

=> "QJutside Site Perimeter",

=> "Inside Perimeter, (utside Site Firewall",

=> "Inside Site Firewall"

default_value => "Sensori"

1,

41

4.2.7.4.3 Configure the nmap.cgi Script.

Sections 4.2.6.7, and 4.2.6.8 alluded to using nmap from the SHADOW toolbar. Sudo was
installed to give the web browser account (shadow) permission to use the root nmap
features. But it is desirable to restrict nmap usage even further; not everyone who can
access and examine the SHADOW data should be allowed to run nmap as root. That

restriction can be accomplished by placing a file named .htaccess in the directory where
the nmap.cgi script is located, (/usr/local/SHADOW /hitpd/cqgi-bin/privileged by default).

Here are the contents of the .htaccess file provided in the SHADOW tarball:

AuthType Basic

AuthName "Privileged SHADOW Users"

AuthUserFile /usr/local/SHADOW/httpd/cgi-bin/privileged/nmap_pwd
Satisfy any

require valid-user

order deny,allow

allow from 172.16.47

deny from all

This file accomplishes the following: It allows anyone from the “privileged” subnet, 172.16.47,
to execute any command in this directory, i.e. nmap.cgi. For those not on the privileged
subnet, if the user has a valid name/password combination in the file nmap_ pwd in the same
directory, he can run the nmap.cgi script as well. All other users who attempt to execute
the script will be denied. To create user/password pairs in the file nmap pwd, you use the
htpasswd command that is furnished as part of the Apache distribution.

htpasswd -c /usr/local/SHADOW/httpd/cgi-bin/privileged/nmap_pwd ImaUser

This command will create the nmap_pwd file and add the user “ImaUser” to it, prompting for
a password twice. Use the command without the “-¢” option to add additional users. Please
see reference [Unix Admin| for more details about how to set up Apache authentication for
individual subdirectories.

4.2.7.5 Configure the Statistics Scripts. = New with version 1.7 of the SHADOW
Package is a set of scripts that is run to generate a daily page of IP statistics that are
collected from the raw SHADOW data files. A button on the SHADOW tool window al-
lows the SHADOW analyst to access the previous day’s statistics summary. In upcoming
section 4.2.9, the last entry in the analyzer crontab file is the command that generates
the daily statistics summary web page. In order to generate the daily statistics, the file
Jusr/local/SHADOW /statistics.ph will need to be configured to recognize inside and outside
IP addresses. The lines that need changing are preceded by “->” in the listing below.

42

Here is the appropriate portions of the file:

1 #! /usr/bin/perl

2 #

3 # statistics.ph - SHADOW Version 1.7

4 # Last changed 23 May 2001
5 #

6 #

7 # Script to read a raw tcpdump hourly file, look at the packets,

8 # and produce some statistics about the traffic seen in that file.

9 # Optionally uses Compress::Zlib Perl module to directly read gzipped files.

10 #

11 # Written by Bill Ralph <RalphWD@nswc.navy.mil>

173 #

174 # Define an array of "internal" IP addresses.

176 #

176 @internal_ip = (

-> 177 "172.21.0.0", "172.22.0.0", "172.16.22.0",

178);

179 Qinternal_mask = (

-> 180 "255.265.0.0", "255.256.0.0", "2565.265.2565.0",

181);

43

182 #

192 #

193 # Let’s look at some specific TCP and UDP ports.

194 #

-> 195 QTCP_ports

1]
~

111234511, ”12346”, "31337", 11204911’ "2766", "5232", "6000",

-> 196 "6667", "20432");

-> 197 QUDP_ports

1]
~

11103011, 11204911’ "3128", "6970", 11707011, "13753", 112043311,
-> 198 "31337");
557 1;

558 # End of statistics.ph

Note: The statistics file is only created after all the twenty-four hourly files have been
created, once per day. So when selecting the particular statistics file to view,
remember that the statistics for today has not yet been created. Yesterday’s file
is the most recent one available for viewing.

4.2.8 Test the SHADOW Scripts.

At this point, your SHADOW system should be set up. To verify it, you need to manually
test the SHADOW scripts to witness that everything works as intended. Hopefully, some
time back, you started one of your sensors and it has been dutifully collecting hourly gzipped

tepdump files. Test your SHADOW analyzer by running:

/usr/local/SHADOW/fetchem.pl -1 sensor01 -d YYYYMMDD -debug

where YYYY=year, MM=2-digit month, and DD=2-digit day of the month.

This command will run the fetchem.pl script which will:

1. Create a debug file /tmp/fetchem.log

44

2. Load the site (sensor) specific information from the header file,
Jusr/local /SHADOW /sites/sensor01.ph.

Create the subdirectories on the analyzer to hold the raw data file and the output html file, if necessary.
Use SSH to see if the necessary raw file exists on the sensor and abort if it doesn’t.
Use scp to copy the gzipped raw data file from the sensor to its place on the analyzer.

Create an output HTML file and write the necessary header information to it.

NS otk W

Start gunzipping the raw data file, and feed the gunzipped data to as many tcpdump processes as
necessary for each of the filters in the sensor filter directory, plus one more for the find_ scan.pl script.

®

Collect all the output text files from the execution of the tepdump processes into a single text file.

9. Sort the concatenated text file by IP address, and convert the IP addresses to system names where
possible.

10. Copy the sorted and resolved text file to the HTML file.

11. Add the information from the find_scan.pl script to the HTML file, then add the navigation bar to
the end along with the necessary closing HTML statements.

12. Remove all the temporary text files created by this run and exit.

With the “-debug” flag set on the fetchem.pl script call, logging information will be written
to /tmp/fetchem.log at many places in the script. By examining each line in that log file,
you can find the corresponding place in the fetchem.pl script where the message was
written. If the script aborts for some reason, the lines in the log will allow you to find the
area of the script that failed. When the process completes normally, you will have an
HTML file created in:

/home/shadow/tcpdump_results/{SITE}/Mondd/YYYYMMDDHH.html

for example: /home/shadow/tcpdump results/sensor01/July 27/2001072713.html.

4.2.9 Configure the Crontab and System Startup Files.

The SHADOW release package contains a file
Jusr/local/SHADOW-1.7/analyzer_ crontab.shadow which contains:

45

SHADOW Version: 1.7
Last Changed: 12 Jul 2001

Crontab for a SHADOW Analyzer.
The following entries should not be done as root.

SHADOW PATH=/usr/local/SHADOW
* X %% $SSHADOW PATH /fetchem.pl -1 SITE

0~ O U W
Ottt F Itk F R F

1 *** $SHADOW _ PATH/cleanup.pl -1 SITE

H
o
H* D%

—
w
—_

90 *** §SHADOW _PATH/run_daily stats.pl -1 SITE

This file is an example crontab that should be run be run as the user “shadow” on the
analyzer. Line 9 says that at 5 minutes past each hour, the script “/usr/10cal/sHapow/fetchem.p1
-1 stte” will be run. You need a line like this with the name you have chosen for your sensor
substituted for “SITE.” If you have more that one sensor, you will need multiple lines, one for
each, with the starting time separated by some number of minutes of your choosing. Line 11
says that the “/usr/10ca1/sHADON/cleanup.p1 -1 sITE” script will be run at 1:17 (am) each day. Line
13 says that the “/usr/1o0ca1/sHADOW/run_daily_stats.pl -1 SITE’ script will be run at 0:19 (12:19am)
each day. As in the first case, your sensor name should be substituted for SITE and multiple
lines duplicated and staggered in time if you serve more than one sensor.

The SHADOW release package contains a file /usr/local/SHADOW-1.7/analyzer _crontab.root
which contains:

SHADOW Version: 1.7
Last Changed: 12 Jul 2001

HFHFH

Crontab for a SHADOW Analyzer. We net to insure that the system clock
is consistent between the analyzer and the sensor.

If this system is not on the internet, we need to reference a standard

time source.

#

9 # These two entries must be done as root.

10 #

11 17 23 * * * /usr/bin/ntpdate time-a.nist.gov

12 18 23 * * * /sbin/hwclock —systohc

13 #

OO U WN

Line 11 uses the ntpdate program to synchronize time with the #ime-a.nist.gov time server
at 23:17 (11:17PM). Line 12 says that at 23:18 the hardware clock will be set to the system
clock just synchronized to the NTP time source. As stated in section 4.1.8, the system clocks
of the analyzer and its sensor should be kept relatively synchronized, without being too picky
about it.

46

4.2.10 Protect Your Analyzer.

The analyzer does not require as much protection as the sensor. Nevertheless, as part of a
“security in depth” philosophy, you should set up your analyzer to detect unwanted activity
and protect itself, rather than depending on outside resources. Prudent security precautions
are always appropriate. Like the sensor, strip the system of all network services except SSH.
On Red Hat Linux 7.1, this involves removing all services from /etc/rinetd.conf and either
removing all the files in the /etc/zinetd.d directory, or adding the line “disable = yes” to each.
The tepwrappers system furnished with Red Hat Linux as an additional security mechanism
allows you to put access control lists on the various services that are allowed to connect to
your system. For more help, see the hosts.allow and hosts.deny man pages and section 4.1.9.

In the SHADOW release package, and included as Appendix D is an example sensor_rc.iptables
file used to protect a typical SHADOW analyzers. The script will allow IP communications
on only those other services that may be necessary, such as DNS, httpd, https, SMTP,
NNTP, etc. It will block and log all other attempts to connect to the analyzer.

Recommended resources for more general information about Linux security, are
|[Max Linux Security|, [Linux Sys Security|, |[Real World Linux Security|, and
[Linux Firewalls|.

4.3 Put Your SHADOW System into Production.

At this point, everything should be working. The sensor should be capturing packets and
writing the raw files. The analyzer should be fetching those files, running them through
your filters and generating your web pages. Your tools should be usable. The easy part of
SHADOW configuration is complete. Now comes the difficult part: learning what your net-
work traffic really looks like and adjusting your filters to reflect the reality of your situation.
As you get more and more familiar with your network, your filters will undoubtedly need
to be changed to reflect what you consider “risky” and what you don’t. The art of creating
filters for different traffic patterns is beyond the scope of SHADOW installation. The best
books on the topic are [NID] and [Intrusion Signatures|. They will give you a foundation
on which to build your SHADOW system, and your intrusion detection expertise. Stay in
touch with SANS Institute www.sans.org to follow what’s happening in intrusion detection
and to get detailed training.

Happy detecting.

47

A SHADOW Sensor Kernel Configuration

This is a copy of the kernel configuration file for a SHADOW sensor (taken from a Ver. 2.4.9
kernel build). Only those configuration options selected are printed out; the rest are left out
to shorten the length of the file.

#

Automatically generated make config: don’t edit
#

CONFIG_X86=y

CONFIG_ISA=y

CONFIG_UID16=y

#

Code maturity level options
#

CONFIG_EXPERIMENTAL=y

#
Loadable module support
#

#

Processor type and features
#

CONFIG_M486=y
CONFIG_X86_WP_WORKS_QOK=y
CONFIG_X86_INVLPG=y
CONFIG_X86_CMPXCHG=y
CONFIG_X86_XADD=y
CONFIG_X86_BSWAP=y
CONFIG_X86_POPAD_OK=y
CONFIG_RWSEM_XCHGADD_ALGORITHM=y
CONFIG_X86_L1_CACHE_SHIFT=4
CONFIG_X86_USE_STRING_486=y
CONFIG_X86_ALIGNMENT_16=y
CONFIG_NOHIGHMEM=y
CONFIG_MTRR=y

#

General setup

#

CONFIG_NET=y
CONFIG_PCI=y
CONFIG_PCI_GOANY=y
CONFIG_PCI_BIOS=y
CONFIG_PCI_DIRECT=y
CONFIG_PCI_NAMES=y
CONFIG_SYSVIPC=y
CONFIG_SYSCTL=y
CONFIG_KCORE_ELF=y
CONFIG_BINFMT_AQUT=y
CONFIG_BINFMT_ELF=y
CONFIG_BINFMT_MISC=y

#
Memory Technology Devices (MTD)

48

Parallel port support

Plug and Play configuration

#

Block devices

#
CONFIG_BLK_DEV_FD=y

#
Multi-device support (RAID and LVM)
#

#

Networking optiomns

#

CONFIG_PACKET=y
CONFIG_NETFILTER=y
CONFIG_NETFILTER_DEBUG=y
CONFIG_UNIX=y
CONFIG_INET=y
CONFIG_SYN_COOKIES=y

#

IP: Netfilter Configuration
#

CONFIG_IP_NF_CONNTRACK=y
CONFIG_IP_NF_FTP=y
CONFIG_IP_NF_IPTABLES=y
CONFIG_IP_NF_MATCH_LIMIT=y
CONFIG_IP_NF_MATCH_MAC=y
CONFIG_IP_NF_MATCH_MARK=y
CONFIG_IP_NF_MATCH_MULTIPORT=y
CONFIG_IP_NF_MATCH_TQ0S=y
CONFIG_IP_NF_MATCH_STATE=y
CONFIG_IP_NF_FILTER=y
CONFIG_IP_NF_TARGET_REJECT=y
CONFIG_IP_NF_TARGET_LOG=y

#

#
#

QoS and/or fair queueing

Telephony Support

#

ATA/IDE/MFM/RLL support
#

CONFIG_IDE=y

49

#

IDE, ATA and ATAPI Block devices
#

CONFIG_BLK_DEV_IDE=y

#

Please see Documentation/ide.txt for help/info on IDE drives
#

CONFIG_BLK_DEV_IDEDISK=y

CONFIG_BLK_DEV_IDECD=y

#

IDE chipset support/bugfixes
#

CONFIG_BLK_DEV_IDEPCI=y
CONFIG_IDEPCI_SHARE_IRQ=y
CONFIG_BLK_DEV_IDEDMA_PCI=y
CONFIG_BLK_DEV_ADMA=y
CONFIG_IDEDMA_PCI_AUTO=y
CONFIG_BLK_DEV_IDEDMA=y
CONFIG_IDEDMA_AUTO=y

#
SCSI support
#
CONFIG_SCSI=y

#

SCSI support type (disk, tape, CD-ROM)
#

CONFIG_BLK_DEV_SD=y
CONFIG_SD_EXTRA_DEVS=40

#

Some SCSI devices (e.g. CD jukebox) support multiple LUNs
#

CONFIG_SCSI_CONSTANTS=y

#

SCSI low-level drivers

#

CONFIG_SCSI_AIC7XXX=y
CONFIG_AIC7XXX_CMDS_PER_DEVICE=8
CONFIG_AIC7XXX_RESET_DELAY_MS=5000

#
Fusion MPT device support
#

HH*

IEEE 1394 (FireWire) support (EXPERIMENTAL)

I20 device support

**

Network device support

20

CONFIG_NETDEVICES=y

#
#
#

#
#
#

ARCnet devices

Ethernet (10 or 100Mbit)

CONFIG_NET_ETHERNET=y
CONFIG_NET_VENDOR_3COM=y
CONFIG_VORTEX=y
CONFIG_NET_PCI=y
CONFIG_TULIP=y

#
#
#

**

#
#
#

Ethernet (1000 Mbit)

Wireless LAN (non-hamradio)

Token Ring devices

Wan interfaces

Amateur Radio support

IrDA (infrared) support

ISDN subsystem

01d CD-ROM drivers (mot SCSI, not IDE)

Input core support

Character devices

CONFIG_VT=y
CONFIG_VT_CONSOLE=y
CONFIG_SERIAL=y
CONFIG_UNIX98_PTYS=y
CONFIG_UNIX98_PTY_COUNT=256

#

o1

I2C support
#

#

Mice

#

CONFIG_MOUSE=y
CONFIG_PSMOUSE=y

#
Joysticks
#

**

Game port support

Gameport joysticks

Serial port support

Serial port joysticks

Parallel port joysticks

Parport support is needed for parallel port joysticks

#

Watchdog Cards

#
CONFIG_RTC=y

**

Ftape, the floppy tape device driver

Multimedia devices

#

File systems

#

CONFIG_FAT_FS=y
CONFIG_MSDOS_FS=y
CONFIG_VFAT_FS=y
CONFIG_IS09660_FS=y
CONFIG_JOLIET=y
CONFIG_PROC_FS=y
CONFIG_DEVPTS_FS=y
CONFIG_EXT2_FS=y

52

#
Network File Systems
#

#

Partition Types

#
CONFIG_MSDOS_PARTITION=y
CONFIG_NLS=y

#

Native Language Support
#
CONFIG_NLS_DEFAULT="cp437"
CONFIG_NLS_CODEPAGE_437=y
CONFIG_NLS_IS08859_1=y

#

Console drivers

#
CONFIG_VGA_CONSOLE=y

#
Frame-buffer support
#

HH*

Sound

USB support

Bluetooth support

HH

Kernel hacking

93

B SHADOW Analyzer Kernel Configuration

This is a copy of the kernel configuration file for a SHADOW analyzer (taken from a Ver.
2.4.9 kernel build). Only those configuration options selected are printed out; the rest are
left out to shorten the length of the file.

#

Automatically generated make config: don’t edit
#

CONFIG_X86=y

CONFIG_ISA=y

CONFIG_UID16=y

#

Code maturity level options
#

CONFIG_EXPERIMENTAL=y

#

Loadable module support
#

CONFIG_MODULES=y
CONFIG_KMOD=y

#

Processor type and features
#

CONFIG_M686=y
CONFIG_X86_WP_WORKS_OK=y
CONFIG_X86_INVLPG=y
CONFIG_X86_CMPXCHG=y
CONFIG_X86_XADD=y
CONFIG_X86_BSWAP=y
CONFIG_X86_POPAD_QOK=y
CONFIG_RWSEM_XCHGADD_ALGORITHM=y
CONFIG_X86_L1_CACHE_SHIFT=5
CONFIG_X86_TSC=y
CONFIG_X86_GOOD_APIC=y
CONFIG_X86_PGE=y
CONFIG_X86_USE_PPRO_CHECKSUM=y
CONFIG_NOHIGHMEM=y
CONFIG_MTRR=y

#

General setup

#

CONFIG_NET=y
CONFIG_PCI=y
CONFIG_PCI_GOANY=y
CONFIG_PCI_BIOS=y
CONFIG_PCI_DIRECT=y
CONFIG_PCI_NAMES=y
CONFIG_SYSVIPC=y
CONFIG_BSD_PROCESS_ACCT=y
CONFIG_SYSCTL=y
CONFIG_KCORE_ELF=y
CONFIG_BINFMT_AQUT=y

54

CONFIG_BINFMT_ELF=y
CONFIG_BINFMT_MISC=y

#
Memory Technology Devices (MID)
#

Parallel port support

Plug and Play configuration

#

Block devices

#

CONFIG_BLK_DEV_FD=y
CONFIG_BLK_DEV_LOOP=m

#
Multi-device support (RAID and LVM)
#

#

Networking optiomns
#

CONFIG_PACKET=y
CONFIG_PACKET_MMAP=y
CONFIG_NETFILTER=y
CONFIG_NETFILTER_DEBUG=y
CONFIG_FILTER=y
CONFIG_UNIX=y
CONFIG_INET=y
CONFIG_SYN_COOKIES=y

#

IP: Netfilter Configuration
#

CONFIG_IP_NF_CONNTRACK=y
CONFIG_IP_NF_FTP=y
CONFIG_IP_NF_IPTABLES=y
CONFIG_IP_NF_MATCH_LIMIT=y
CONFIG_IP_NF_MATCH_MAC=y
CONFIG_IP_NF_MATCH_MARK=y
CONFIG_IP_NF_MATCH_MULTIPORT=y
CONFIG_IP_NF_MATCH_TO0S=y
CONFIG_IP_NF_MATCH_STATE=y
CONFIG_IP_NF_FILTER=y
CONFIG_IP_NF_TARGET_REJECT=y
CONFIG_IP_NF_TARGET_LOG=y

#
#
#

**

QoS and/or fair queueing

95

#
Telephony Support
#

#

ATA/IDE/MFM/RLL support
#

CONFIG_IDE=y

#

IDE, ATA and ATAPI Block devices
#

CONFIG_BLK_DEV_IDE=y

#

Please see Documentation/ide.txt for help/info on IDE drives
#

CONFIG_BLK_DEV_IDEDISK=y

CONFIG_BLK_DEV_IDECD=y

CONFIG_BLK_DEV_IDESCSI=m

#

IDE chipset support/bugfixes
#

CONFIG_BLK_DEV_IDEPCI=y
CONFIG_IDEPCI_SHARE_IRQ=y
CONFIG_BLK_DEV_IDEDMA_PCI=y
CONFIG_BLK_DEV_ADMA=y
CONFIG_IDEDMA_PCI_AUTO=y
CONFIG_BLK_DEV_IDEDMA=y
CONFIG_IDEDMA_AUTO=y

#
SCSI support
#
CONFIG_SCSI=y

#

SCSI support type (disk, tape, CD-ROM)
#

CONFIG_BLK_DEV_SD=y
CONFIG_SD_EXTRA_DEVS=40
CONFIG_CHR_DEV_ST=m

CONFIG_BLK_DEV_SR=m
CONFIG_BLK_DEV_SR_VENDOR=y
CONFIG_SR_EXTRA_DEVS=2
CONFIG_CHR_DEV_SG=m

#

Some SCSI devices (e.g. CD jukebox) support multiple LUNs
#

CONFIG_SCSI_DEBUG_QUEUES=y

CONFIG_SCSI_MULTI_LUN=y

CONFIG_SCSI_CONSTANTS=y

CONFIG_SCSI_LOGGING=y

#

SCSI low-level drivers

#

CONFIG_SCSI_AIC7XXX=y
CONFIG_AIC7XXX_CMDS_PER_DEVICE=8

26

CONFIG_AIC7XXX_RESET_DELAY_MS=5000

HH

#
#
#

Fusion MPT device support

IEEE 1394 (FireWire) support (EXPERIMENTAL)

I20 device support

Network device support

CONFIG_NETDEVICES=y

#
#
#

#
#
#

ARCnet devices

Ethernet (10 or 100Mbit)

CONFIG_NET_ETHERNET=y
CONFIG_NET_VENDOR_3COM=y
CONFIG_VORTEX=y

#
#
#

**

Ethernet (1000 Mbit)

Wireless LAN (non-hamradio)

Token Ring devices

Wan interfaces

Amateur Radio support

IrDA (infrared) support

ISDN subsystem

01d CD-ROM drivers (not SCSI, not IDE)

57

#
Input core support
#

#

Character devices

#

CONFIG_VT=y
CONFIG_VT_CONSOLE=y
CONFIG_SERIAL=y
CONFIG_UNIX98_PTYS=y
CONFIG_UNIX98_PTY_COUNT=256

#
I2C support
#

#

Mice

#

CONFIG_MOUSE=y
CONFIG_PSMOUSE=y

#

Joysticks
#

Game port support

Gameport joysticks

Serial port support

Serial port joysticks

Parallel port joysticks

Parport support is needed for parallel port joysticks

#

Watchdog Cards
#

CONFIG_RTC=y

#

Ftape, the floppy tape device driver
#

CONFIG_AGP=m

o8

CONFIG_AGP_INTEL=y
CONFIG_DRM=y
CONFIG_DRM_R128=m

#
Multimedia devices
#

#

File systems

#

CONFIG_FAT_FS=y
CONFIG_MSDOS_FS=y
CONFIG_VFAT_FS=y
CONFIG_TMPFS=y
CONFIG_IS09660_FS=y
CONFIG_JOLIET=y
CONFIG_MINIX_FS=m
CONFIG_NTFS_FS=m
CONFIG_PROC_FS=y
CONFIG_DEVPTS_FS=y
CONFIG_EXT2_FS=y

#

Network File Systems
#

CONFIG_NFS_FS=y
CONFIG_NFS_V3=y
CONFIG_NFSD=y
CONFIG_NFSD_V3=y
CONFIG_SUNRPC=y
CONFIG_LOCKD=y
CONFIG_LOCKD_V4=y
CONFIG_SMB_FS=y

#

Partition Types

#
CONFIG_MSDOS_PARTITION=y
CONFIG_SMB_NLS=y
CONFIG_NLS=y

#

Native Language Support
#
CONFIG_NLS_DEFAULT="cp437"
CONFIG_NLS_CODEPAGE_437=y
CONFIG_NLS_IS08859_1=y

#

Console drivers

#
CONFIG_VGA_CONSOLE=y

#
Frame-buffer support
#

#
Sound
#

99

CONFIG_SOUND=m
CONFIG_SOUND_ES1371=m

#

HH

USB support

Bluetooth support

Kernel hacking

60

C Protecting your SHADOW sensor

The following is an example iptables shell script that can be put into the /etc/re.d/rc.local
script on the sensor to help protect it from unauthorized access attempts.

#!/bin/sh

SHADOW Version 1.7
Last Modified 3 Jul 2001

Written by Bill Ralph <RalphWD@nswc.navy.mil>

Script to limit packets accepted by a Linux box.

H OH H HE H K R

LOOPBACK="127.0.0.1"

LOOPBACK_IF="1o"

ACTIVE_IF="ethO"

PASSIVE_IF="ethl"

ANALYZER="172.16.47.1/32"

#

Source function library.
/etc/rc.d/init.d/functions

if [! -f /etc/sysconfig/metwork]; then
exit O

fi
/etc/sysconfig/network

Check that networking is up.

[${NETWORKING} = "no"] && exit O

[-x /sbin/ifconfig] || exit O

CWD="“pwd ¢
cd /etc/sysconfig/network-scripts

[-f /etc/sysconfig/metwork-scripts/ifcfg-$ACTIVE_IF] || exit O

/etc/sysconfig/network-scripts/ifcfg-$ACTIVE_IF

Define some other variables.
#
LOG_LEVEL="notice"

First, flush any current chains, then remove any user-defined chains.
#

iptables -F

iptables -X

#
Make the default policy of the input chain DROP
#

iptables -P INPUT DROP

Allow unlimited traffic on loopback interface.
#
iptables -A INPUT -i lo -j ACCEPT
iptables -A OUTPUT -o lo -j ACCEPT
iptables -A INPUT -i $ACTIVE_IF -s $IPADDR/32 -j ACCEPT
iptables -A OUTPUT -o $ACTIVE_IF -s $IPADDR/32 -j ACCEPT

Allow nothing to go out on our passive interface.
#
iptables -A OUTPUT -i $PASSIVE_IF -j DROP

Create a chain to log information about a connection, then drop it.
#
iptables -N log_drop
iptables -A log_drop -m limit --limit 5/m \
-j LOG --log-level $LOG_LEVEL --log-prefix "Dropped: "
iptables -A log_drop -j DROP

Create a chain to reject a packet with a icmp-host-prohibited packet.
Severely limit the bandwidth accepted.
#
iptables -N log_rej
iptables -A log_rej -m limit --limit 1/h \
-j LOG --log-level $LOG_LEVEL --log-prefix "Rejected: "
iptables -A log_rej -j REJECT --reject-with icmp-host-prohibited

Create a chain to specifically accept IP traffic on established
connections that we initiated. Log traffic on INVALID connectioms.
#
iptables -N allowed
iptables -A allowed --match state --state INVALID -j LOG \
--log-prefix "INVALID conn:"
iptables -A allowed --match state --state INVALID -j DROP
iptables -A allowed --match state --state ESTABLISHED,RELATED -j ACCEPT

Create a chain to look at TCP packets. Examine the flags and limit the
weird ones we will accept. Limit the average matching rate to slow down
nmaps and such.
#
iptables -N tcp_pkts
iptables -A tcp_pkts -p tcp --tcp-flags ALL FIN,URG,PSH -m limit \
--limit 5/minute -j LOG --log-level $LOG_LEVEL \
--log-prefix "NMAP-XMAS:"
iptables -A tcp_pkts -p tcp --tcp-flags ALL FIN,URG,PSH -j DROP

62

iptables -A tcp_pkts -p tcp --tcp-flags SYN,RST SYN,RST -m limit \
--limit 5/minute -j LOG --log-level $LOG_LEVEL \
--log-prefix "SYN/RST:"

iptables -A tcp_pkts -p tcp --tcp-flags SYN,RST SYN,RST -j DROP

iptables -A tcp_pkts -p tcp --tcp-flags SYN,FIN SYN,FIN -m limit \
--limit 5/minute -j LOG --log-level $LOG_LEVEL \
--log-prefix "SYN/FIN:"

iptables -A tcp_pkts -p tcp --tcp-flags SYN,FIN SYN,FIN -j DROP

Accept SSH connections only from analyzer (subnet) - Deny all other
SSH attempts.

H OH OH W

iptables -A tcp_pkts -p tcp -s $ANALYZER --dport 22 -j ACCEPT
#
Accept SMTP connections from our mail relays.
#
iptables -A tcp_pkts -p tcp -s 172.16.99.0/24 --dport 25 -j ACCEPT
iptables -A tcp_pkts -p tcp -s 172.16.254.41/32 --dport 25 -j ACCEPT
iptables -A tcp_pkts -p tcp -s 172.16.254.42/32 --dport 25 -j ACCEPT
#
Log all TCP SYN (connection) requests
#
iptables -A tcp_pkts -p tcp -i ! lo --syn -j LOG --log-level $LOG_LEVEL \
--log-prefix "Incoming SYN:"
iptables -A tcp_pkts -j DROP

Create a chain for ICMP packets. Accept them only from our network

except for broadcasts.

#
iptables -N icmp_pkts
iptables -A icmp_pkts -p icmp -d ${NETWORK}/32 --icmp-type 8 -j log_drop
iptables -A icmp_pkts -p icmp -d ${BROADCAST}/32 --icmp-type 8 -j log_drop
iptables -A icmp_pkts -p icmp -d 255.255.255.255/32 --icmp-type 8 -j log_drop
iptables -A icmp_pkts -p icmp -s 172.16.99.0/24 --icmp-type 8 -j ACCEPT
iptables -A icmp_pkts -p icmp -s 0.0.0.0/0 --icmp-type echo-reply -j ACCEPT
iptables -A icmp_pkts -j log_drop

Create a chain for UDP packets. Deny most, except NETBIOS from our submet,
and DNS from our name servers. Don’t need ’em, and they’re dangerous.
Deny RIP packets from our router. Log all other udp packets.
#
iptables -N udp_pkts
iptables -A udp_pkts -p udp -s 172.16.99.0/24 --dport 111 -j ACCEPT
iptables -A udp_pkts -p udp -s 172.16.99.0/24 --dport 113 -j ACCEPT
iptables -A udp_pkts -p udp -s 172.16.86.1/32 --sport 123 -j ACCEPT
iptables -A udp_pkts -p udp -s 172.16.100.1/32 --sport 53 -j ACCEPT
iptables -A udp_pkts -p udp -s 172.16.254.2/32 --sport 53 -j ACCEPT
iptables -A udp_pkts -p udp --sport 520 -j DROP
iptables -A udp_pkts -j log_drop

Apply the defined chains to the input chain.
#
iptables -A INPUT -j allowed

63

iptables -A INPUT -p tcp -j tcp_pkts
iptables -A INPUT -p udp -j udp_pkts
iptables -A INPUT -p icmp -j icmp_pkts

64

D Protecting your SHADOW Analyzer

The following is an example iptables shell script that can be put into the /etc/re.d/rc.local
script on the analyzer to help protect it from unauthorized access attempts.

#!/bin/sh

SHADOW Version 1.7
Last Modified 1 Aug 2001

#

#

#

#

Written by Bill Ralph <RalphWD@nswc.navy.mil>

#

Script to limit packets accepted by a Linux box.
#
#

Source function library.
/etc/rc.d/init.d/functions

if [! -f /etc/sysconfig/metwork]; then
exit O
fi

/etc/sysconfig/network

Check that networking is up.
[${NETWORKING} = "no"] && exit O

[-x /sbin/ifconfig] || exit O

CWD=*“pwd ¢
cd /etc/sysconfig/network-scripts

[-f /etc/sysconfig/network-scripts/ifcfg-eth0] || exit 0

/etc/sysconfig/network-scripts/ifcfg-eth0

Define some other variables.
#
LOG_LEVEL="notice"

First, flush any current chains, then remove any user-defined chains.
#

iptables -F

iptables -X

Make the default policy of the input chain DROP
#
iptables -P INPUT DROP

65

Allow unlimited traffic on loopback interface.
#
iptables -A INPUT -i lo -j ACCEPT
iptables -A OUTPUT -o lo -j ACCEPT
iptables -A INPUT -i ethO -s $IPADDR/32 -j ACCEPT
iptables -A OUTPUT -o ethO -s $IPADDR/32 -j ACCEPT

Create a chain to log information about a connection, then drop it.
#
iptables -N log_drop
iptables -A log_drop -m limit --limit 5/m \
-j LOG --log-level $LOG_LEVEL --log-prefix "Dropped: "
iptables -A log_drop -j DROP

**

reate a chain to reject a packet with a icmp-host-prohibited packet.

¢
Severerly limit the bandwidth accepted.

H H O W

iptables -N log_rej
iptables -A log_rej -m limit --limit 1/h \

-j LOG --log-level $LOG_LEVEL --log-prefix "Rejected: "
iptables -A log_rej -j REJECT --reject-with icmp-host-prohibited

Create a chain to specifically accept IP traffic on established
connections that we initiated. Log traffic on INVALID connectioms.
#
iptables -N allowed
iptables -A allowed --match state --state INVALID -j LOG \
--log-prefix "INVALID conn:"
iptables -A allowed --match state --state INVALID -j DROP
iptables -A allowed --match state --state ESTABLISHED,RELATED -j ACCEPT

Create a chain to look at TCP packets. Examine the flags and limit the
weird ones we will accept. Limit the average matching rate to slow down
nmaps and such.
#
iptables -N tcp_pkts
iptables -A tcp_pkts -p tcp --tcp-flags ALL FIN,URG,PSH -m limit \
--limit 5/minute -j LOG --log-level $LOG_LEVEL \
--log-prefix "NMAP-XMAS:"
iptables -A tcp_pkts -p tcp --tcp-flags ALL FIN,URG,PSH -j DROP
iptables -A tcp_pkts -p tcp --tcp-flags SYN,RST SYN,RST -m limit \
--limit 5/minute -j LOG --log-level $LOG_LEVEL \
--log-prefix "SYN/RST:"
iptables -A tcp_pkts -p tcp --tcp-flags SYN,RST SYN,RST -j DROP
iptables -A tcp_pkts -p tcp --tcp-flags SYN,FIN SYN,FIN -m limit \
--limit 5/minute -j LOG --log-level $LOG_LEVEL \
--log-prefix "SYN/FIN:"
iptables -A tcp_pkts -p tcp --tcp-flags SYN,FIN SYN,FIN -j DROP

Accept SSH connections only from acceptable people - Deny all other
SSH attempts.

H H W

iptables -A tcp_pkts -p tcp -s 0.0.0.0/0 --dport 22 -j ACCEPT

66

#
#

Accept TCP connections only from our subnet - Accept http/https and timed
connections from anyone at goodguys.org. Deny all other
TCP packets on the well-known ports.

#

#iptables -A tcp_pkts -p tcp -s 172.16.77.0/24 -j ACCEPT
iptables -A tcp_pkts -p tcp -s 172.16.0.0/16 --dport 80 -j ACCEPT
iptables -A tcp_pkts -p tcp -s 172.16.0.0/16 --dport 443 -j ACCEPT

#

Accept SMTP connections from our friends

#
iptables
iptables
iptables

#

Log all

#
iptables

iptables

-A tcp_pkts -p tcp -s 172.16.77.0/24 --dport 25 -j ACCEPT
-A tcp_pkts -p tcp -s 172.16.100.201/32 --dport 25 -j ACCEPT
-A tcp_pkts -p tcp -s 172.16.100.202/32 --dport 25 -j ACCEPT

TCP SYN (connection) requests

-A tcp_pkts -p tcp -i ! 1lo --syn -j LOG --log-level $LOG_LEVEL \
--log-prefix "Incoming SYN:"

-A tcp_pkts -j DROP

Create a chain for ICMP
except for broadcasts.

#
iptables
iptables
iptables
iptables
iptables
iptables
iptables

icmp_pkts
icmp_pkts
icmp_pkts
icmp_pkts
icmp_pkts
icmp_pkts
icmp_pkts

-P
-P
-P
-P
-]

packets. Accept them only from our network

icmp -d ${NETWORK}/32 --icmp-type 8 -j log_drop

icmp -d ${BROADCAST}/32 --icmp-type 8 -j log_drop
icmp -d 255.255.255.255/32 --icmp-type 8 -j log_drop
icmp -s 172.16.77.0/24 --icmp-type 8 -j ACCEPT

icmp -s 0.0.0.0/0 --icmp-type echo-reply -j ACCEPT
log_drop

Create a chain for UDP packets. Deny most, except NETBIOS from our subnet,
and DNS from our name servers. Don’t need ’em, and they’re dangerous.
Deny RIP packets from our router. Log all other udp packets.

#
iptables
iptables
iptables
iptables
iptables
iptables
iptables
iptables
iptables
iptables
iptables
iptables

udp_pkts
udp_pkts
udp_pkts
udp_pkts
udp_pkts
udp_pkts
udp_pkts
udp_pkts
udp_pkts
udp_pkts
udp_pkts
udp_pkts

-P
-P
-P

-P
-P
-P
-P
-P
-]

udp
udp
udp
udp
udp
udp
udp
udp
udp
udp

-s 172.16.77.0/24 --dport 111 -j ACCEPT

-s 172.16.77.0/24 --dport 113 -j ACCEPT

-s 172.16.76.1/32 --sport 123 -j ACCEPT

-s 172.16.77.0/24 --dport 2049 -j ACCEPT

-s 172.16.77.0/24 --dport 1025 -j ACCEPT

-s 172.16.77.0/24 --dport 135:139 -j ACCEPT
-s 172.16.1.2/32 --sport 53 -j ACCEPT

-s 172.16.1.1/32 --sport 53 -j ACCEPT

-s 172.16.77.50/32 --sport 35 -j ACCEPT
--sport 520 -j DROP

_drop

Apply the defined chains to the input chain.

#

iptables -A INPUT -j allowed

iptables -A INPUT -p tcp -j tcp_pkts

67

iptables -A INPUT -p udp -j udp_pkts
iptables -A INPUT -p icmp -j icmp_pkts

68

References

[RHL-Install]

[SSH]

|Unix Admin]|

[Apache]

[Programming Perl|

[CGIL.pm]

[Max Linux Security]|

[Linux Sys Security]

|[Real World Linux Security]

|Linux Firewalls|

[NID]

[Intrusion Signatures]

The Official Red Hat Linux 7.1 x86 Installation Guide, Red
Hat, Inc., 2001

SSH The Secure Shell, The Definitive Guide, Daniel J.
Barrett and Richard E. Slverman, ISBN: 0-596-00011-1,
O’Reilly and Associates, 2001

Unix System Administration Handbook, Third Edition, Evi
Nemeth, Garth Snyder, Scott Seebass, and Trent R. Hein,
ISBN 0-13-020601-6, Prentice Hall PTR, 2001.

Apache, The Definitive Guide, Second Edition, Ben Laurie &
Peter Laurie, ISBN 1-56592-528-9, O’Reilly and Associates,
1999.

Programming Perl, Third Edition, Larry Wall, Tom
Christiansen, and Jon Orwant, ISBN 0-596-00027-8, O’Reilly
and Associates, 2000.

Official Guide to Programming with CGI.pm, Lincoln Stein,
ISBN: 0-471-24744-8, John Wiley & Sons, Inc., 1998.

Mazimum Linux Security, Anonymous, ISBN 0-672-31670-6,
SAMS Publishing, 2000.

Linux System Security, Scott Mann and Ellen L. Mitchell,
ISBN 0-13-015807-0, Prentice Hall PTR, 2000.

Real World Linuz Security, Bob Toxen, ISBN 0-13-028187-5,
Prentice Hall PTR, 2001.

Linuz Firewalls, Robert L. Ziegler, ISBN 0-7357-0900-9, New
Riders Publishing, 2000.

Network Intrusion Detection, An Analyst’s Handbook, Second
Edition, Stephen Northcutt and Judy Novak, ISBN 0-7357-
1008-2, New Riders Publishing, 2001.

Intrusion Signatures and Analysis, Stephen Northcutt, Mark
Cooper, Matt Fearnow, and Karen Frederick, ISBN 0-7357-
1063-5, New Riders Publishing, 2001.

69

Index

.htaccess, 42 configuration, 27
connection, testing, 25
abnormal traffic, 31 crontab, 24

analyzer and sensor, single system, 16
analyzer, accessories, 20
analyzer, Apache install, 20

custom configuration, 17
custom kernel, 7

analyzer, building, 16 debug, 26, 45
analyzer, CGI scripts, 31 DMZ, 15, 16, 22
analyzer, compose IR, 31 DSA, 24

analyzer, Compress::Zlib install, 21
analyzer, crontab, 45
analyzer, custom kernel, 17

encryption, 24
Ethernet interfaces, 15

analyzer, directories, 28 fetchem. 21, 44
analyzer, filter configuration, 30 filter ﬁ]és 3’0
analyzer, hardware requirements, 16 ﬁlter.geta’ll, 30
analyzer, kernel configuration, 54 filters. 21. 31
analyzer, OpenSSH install, 22 ﬁrewa’ll, 1’5

analyzer, OS install, 17

Firewall Configuration, 7
analyzer, packages, 17

analyzer, protection, 47 global parameters, 28
analyzer, script testing, 44 goodhost.filter, 30
analyzer, shadow user, 19 gunzip, 21, 28
analyzer, site configuration, 29 gzip, 21, 28

analyzer, software configuration, 27

analyzer, statistics scripts, 42 home page, 20
analyzer, system initialization, 45 host keys, 22
analyzer, tcpdump install, 21 hosts.allow, 15, 47
Apache, 20, 27, 42 hosts.deny, 47
Apache authentication, 42 htpasswd, 42
authentication, 27 http configuration, 20
authorized keys, 24 httpd configuration patch, 20

authorized keys2, 24 icmp.filter, 30

block services, 47 IDE, 6
Incident Report, 31
CGI, 31 invisible interface, 6-8, 15
cleanup, 46 ip.filter, 30
Compress Zlib, 21 iptables, 7, 15, 47

70

kernel loadable modules, 8
key generation, 23
key pair, 23

Lawrence Berkeley Laboratory, 5

log file, 45
logging, 47

mail aliases, 31
mod perl, 20
mod ssl, 20

netlog, 5

network services, 47
NMAP, 26

nmap, 26, 27, 42
nmap pwd, 42
nmap.cgi, 42

NTP, 14

ntpdate, 14, 46

obfuscate, 31

Open source, 5
OpenSSH, 10, 20, 22
operational, 25
optimize, 18

package selection, 7, 17
parameters, 30

partition, 7

passphrase, 24

patches, 7, 17, 20

Perl header, 28

Production, 47

promiscuous, 15

public key, 22

public key authentication, 23

RAID, 16
reconnaissance, 26
Red Hat Linux, 5
restrict nmap, 42

71

review, 25

root privileges, 27
RPM, 8

RSA, 24

scp, 28

SCSI, 6

search, 40

search.cgi, 40

security, 15

security in depth, 47

sensor crontab, 13

sensor driver, 14

sensor filter, 13

sensor identification, 40

sensor initialization, 13, 14
sensor, building, 6

sensor, crontab, 13

sensor, custom kernel, 8

sensor, hardware, 6

sensor, kernel configuration, 48
sensor, OpenSSH install, 10
sensor, OS install, 6

sensor, placing, 15

sensor, protecting, 14

sensor, software configuration, 13
sensor, system initialization, 13
sensor, tcpdump install, 10
services, 15

SHADOW global configuration, 27
SHADOW home page directory, 20
shadow user account, 23
signatures, 31

Site, 29

Sitel.ph, 29

span port, 15

spec, 20

ssh, 28

ssh directory, 24, 25
SSH keys, 24

ssh known hosts, 23
SSH port, 15

SSH protocol, 22-25
sshd, 23, 26
standard sensor header, 13
statistics, 42
statistics.ph, 42
strip comments, 31
subdirectories, 28
SUDO, 27, 42
sudoers file, 27
switch port, 15

tep.filter, 30
tcpdump, 5, 10, 20, 21, 28, 31
tcpwrappers, 14, 47

udp.filter, 30

web page, 25
web pages, 31

xinetd configuration, 14, 47

72

