
User Mode Linux
Linux inside Linux inside Linux inside...

Muli Ben-Yehuda

mulix@mulix.org

IBM Haifa Research Labs

Linux Study Group, HRL, Oct 2003 – p.1/23

what is UML?

User Mode Linux (UML, hereafter) is a port of Linux (the
kernel) to run as a program inside Linux (the system),
creating a free software production quality Linux virtual
machine. Instead of working directly with the hardware,
UML uses the host’s system call interface in place of
the hardware. Surprisingly enough, it actually works.

UML was developed primarily by Jeff Dike
<jdike@karaya.com>. Many people (including yours
truly) contributed patches and bug fixes.

UML is part of the official Linux kernel distribution as of
kernel 2.5, and there are patches available for 2.2 and
2.4.

Linux Study Group, HRL, Oct 2003 – p.2/23

TOC

Introduction to UML (what is it good for?)

UML capabilities
UML limitations

Overview of UML architecture

Interlude - the ptrace API

Tracing Thread (TT) mode

Seperate Kernel Addressspace (SKAS) mode

Linux Study Group, HRL, Oct 2003 – p.3/23

what is it good for?

testing and debugging kernel patches, without requiring
a reboot and using a mature debugger (gdb)

private servers on shared hosts, virtual machine
hosting - people are selling hosting based on UML

experimenting with system administration scenarios
and new Linux distributions / services

teaching operating systems ;-)

UML clusters...

(when UML-win32 comes of age) running Linux on
windows machine - tapping into unused resources at
night

Linux Study Group, HRL, Oct 2003 – p.4/23

building and running it

make menuconfig ARCH=um

make linux

./linux [gazillion optional options here]

simple, isn’t it? Don’t forget you also need the UML utilities
and a root file systems. You can get everything (with
instructions) from http://user-mode-linux.sf.net

Linux Study Group, HRL, Oct 2003 – p.5/23

UML capabilities

run user space code unmodified (like vmware and as
opposed to e.g. the Xen virtual machine)

secure virtual machine in software only

reasonable performance, dependant on the workload
but generally speaking no worse than half than the
host’s performance

access to host file systems via hostfs

full networking support

SMP, highmem support

can run Linux on any other OS

potential access to kernel primitives as a user space
library

Linux Study Group, HRL, Oct 2003 – p.6/23

UML limitations

performance...

access to hardware requires special UML drivers

cannot be used to debug architecture dependent kernel
code

only runs on Linux currently, and only on i386 (but
porting to other OS’s / architectures a Simple Matter of
Programming)

Linux Study Group, HRL, Oct 2003 – p.7/23

UML design

UML is a port of the Linux kernel to a new “virtual”
architecture - Linux’s system call interface. The Linux kernel
is divided into an architecture independent part, which is
the bulk of the code, and into an architecture dependent
part (include/asm-* and arch/*). UML is a port of Linux to
the “UML architecture”. Under arch/um, it implements the
architecture specific interface the rest of the Linux kernel
expects.

Linux Study Group, HRL, Oct 2003 – p.8/23

Example: setting up physical memory

When UML starts up, libc’s startup code calls main(), which then calls linux_main().

linux_main() calls setup_physmem() to setup UML’s imitation of physical memory:

void setup_physmem(unsigned long start, unsigned long reserve_end,

unsigned long len)

{

unsigned long reserve = reserve_end - start;

int pfn = PFN_UP(__pa(reserve_end));

int delta = (len - reserve) >> PAGE_SHIFT;

int err, offset, bootmap_size;

physmem_fd = create_mem_file(len);

offset = uml_reserved - uml_physmem;

err = os_map_memory((void *) uml_reserved, physmem_fd, offset,

len - offset, 1, 1, 0);

[snip]

}

Linux Study Group, HRL, Oct 2003 – p.9/23

create_mem_file

int create_mem_file(unsigned long len)

{

int fd, err;

char zero;

fd = make_tempfile(TEMPNAME_TEMPLATE, NULL, 1);

[snip error checking]

err = os_mode_fd(fd, 0777);

[snip various checks]

err = os_set_exec_close(fd, 1);

if(err < 0)

os_print_error(err, "exec_close");

return(fd);

}

Linux Study Group, HRL, Oct 2003 – p.10/23

os_close_on_exec - Linux implementation

int os_set_exec_close(int fd, int close_on_exec)

{

int flag, err;

if(close_on_exec) flag = FD_CLOEXEC;

else flag = 0;

do {

err = fcntl(fd, F_SETFD, flag);

} while((err < 0) && (errno == EINTR)) ;

if(err < 0)

return(-errno);

return(err);

}

Linux Study Group, HRL, Oct 2003 – p.11/23

os_map_memory - Linux implementation

int os_map_memory(void *virt, int fd, unsigned long off, unsigned long len,

int r, int w, int x)

{

void *loc;

int prot;

prot = (r ? PROT_READ : 0) | (w ? PROT_WRITE : 0) |

(x ? PROT_EXEC : 0);

loc = mmap((void *) virt, len, prot, MAP_SHARED | MAP_FIXED,

fd, off);

if(loc == MAP_FAILED)

return(-errno);

return(0);

}

Linux Study Group, HRL, Oct 2003 – p.12/23

interlude - the ptrace API

ptrace is a low level, architecture dependant POSIX API for
one process to intimately manipulate another. It is the
mechanism used by debuggers, for example.
show strace /bin/echo as an example of syscall tracing
show dumpmem /bin/echo as an example of memory dumping

Linux Study Group, HRL, Oct 2003 – p.13/23

interlude - the ptrace API interface

#include <sys/ptrace.h>

long ptrace(enum __ptrace_request request, pid_t pid, void

*addr, void *data);

enum __ptrace_request

{

/* Indicate that the process making this request should be traced.

All signals received by this process can be intercepted by its

parent, and its parent can use the other ‘ptrace’ requests. */

PTRACE_TRACEME = 0,

/* Return the word in the process’s text space at address ADDR. */

PTRACE_PEEKTEXT = 1,

/* Return the word in the process’s data space at address ADDR. */

PTRACE_PEEKDATA = 2,

Linux Study Group, HRL, Oct 2003 – p.14/23

interlude - the ptrace API interface - cont

/* Return the word in the process’s user area at offset ADDR. */

PTRACE_PEEKUSER = 3,

/* Write DATA into the process’s text space at address ADDR.*/

PTRACE_POKETEXT = 4,

/* Write DATA into the process’s data space at address ADDR.*/

PTRACE_POKEDATA = 5,

/* Write DATA into the process’s user area at offset ADDR. */

PTRACE_POKEUSER = 6,

/* Continue the process. */

PTRACE_CONT = 7,

/* Kill the process. */

PTRACE_KILL = 8,

/* Single step the process. This is not supported on all machines. */

PTRACE_SINGLESTEP = 9,

/* Get all general purpose registers used by a processes.

This is not supported on all machines. */

PTRACE_GETREGS = 12,

Linux Study Group, HRL, Oct 2003 – p.15/23

interlude - the ptrace API interface - cont

/* Set all general purpose registers used by a processes.

This is not supported on all machines. */

PTRACE_SETREGS = 13,

[snip]

/* Attach to a process that is already running. */

PTRACE_ATTACH = 16,

/* Detach from a process attached to with PTRACE_ATTACH. */

PTRACE_DETACH = 17,

[snip]

/* Continue and stop at the next (return from) syscall. */

PTRACE_SYSCALL = 24

};

Linux Study Group, HRL, Oct 2003 – p.16/23

Tracing Thread mode overview

each UML process gets a process on the host

the tracing thread system call tracing on the UML
processes (via ptrace)

the tracing thread nullified system calls, and caused the
process to enter the UML kernel, which is mapped into
the upper part of its address space

All user processes share the UML kernel’s address space!
without due care, they can write it and escapte the virtual
machine. With due care, performance suffers.

Linux Study Group, HRL, Oct 2003 – p.17/23

guest process system calls

A process running inside UML (guest process) executes
a system call instruction (int 0x80)

via ptrace, the tracing thread is woken up

the tracing thread annuls the system call on behalf of
the UML process, and then forces the kernel to execute
the system call

the system call is executed, and when it is done, the
tracing thread is woken up again

the tracing thread manipulates the UML process state
to think it completed the system call

the UML process continues running

Linux Study Group, HRL, Oct 2003 – p.18/23

SKAS mode

the UML kernel runs in an entirely different host
address space from its processes

solves the security problem - UML kernel totally
inaccessible to UML processes

also solves the fingerprinting problem - guest processes
address space now identical to what they would be on a
non UML host

major speedup by eliminating signal delivery(?)

Linux Study Group, HRL, Oct 2003 – p.19/23

SKAS mode - /proc/mm

Let’s look at what is required in order to support seperate
address spaces...
go over the host-skas3.patch

Linux Study Group, HRL, Oct 2003 – p.20/23

SKAS mode - switch_mm

schedule(), the scheduler function, calls switch_mm()
before switching tasks via switch_to(). switch_mm() is
implemented in asm/um/mmu_context.h as:
static inline void switch_mm(struct mm_struct *prev,

struct mm_struct *next,

struct task_struct *tsk,

unsigned cpu)

{

if(prev != next){

clear_bit(cpu, &prev->cpu_vm_mask);

set_bit(cpu, &next->cpu_vm_mask);

if(next != &init_mm) {

int fd = next->context.skas.mm_fd;

CHOOSE_MODE((void) 0,

switch_mm_skas(fd));

}

}

}

Linux Study Group, HRL, Oct 2003 – p.21/23

SKAS mode - switch_mm_skas

void switch_mm_skas(int mm_fd)

{

int err;

err = ptrace(PTRACE_SWITCH_MM, userspace_pid, 0, mm_fd);

if(err)

panic("switch_mm_skas - PTRACE_SWITCH_MM failed,"

"errno = %d\n", errno);

}

Linux Study Group, HRL, Oct 2003 – p.22/23

References

The User Mode Linux homepage:
http://user-mode-linux.sourceforge.net/

The User Mode Linux SKAS page:
http://user-mode-linux.sourceforge.net/skas.html

The User Mode Linux Community Site:
http://usermodelinux.org/

Linux Study Group, HRL, Oct 2003 – p.23/23

	what is UML?
	TOC
	what is it good for?
	building and running it
	UML capabilities
	UML limitations
	UML design
	Example: setting up physical memory
	create_mem_file
	os_close_on_exec - Linux implementation
	os_map_memory - Linux implementation
	interlude - the ptrace API
	interlude - the ptrace API interface
	interlude - the ptrace API interface - cont
	interlude - the ptrace API interface - cont
	Tracing Thread mode overview
	guest process system calls
	SKAS mode
	SKAS mode - /proc/mm
	SKAS mode - switch_mm
	SKAS mode - switch_mm_skas
	References

