32bit Assembly Quick Start using
Visual Studio and MASM on Windows

Jim Weller

<jimatat jinmmeller doot net>
Copyright © 2003 Jim Weller
9/5/2003

Describes howto use nmake and MS Visual Studio to create, compile, and debug programs written in assembly lan-
guage for masm on x86. Serves as a solid introduction to microsoft makefiles and assembly programming. It isin-
tended to get devel opers with other programming experience up and running quickly. It is perfect as afirst assembly
lesson in a college computer architecture or assembly course.

Table of Contents

L= = I N o 1
o= 0 SRR 1
Notices and ACKNOWIEAGEMENTSc.oriiuiriiireee ettt sttt 2

F gL oo 1 1o o TP 2

REGUITEIMENTS ...ttt ettt bbbt bbb e et e e e e et e b e e b e e Re e heeb e e besReebeeb e seese et e eeere e s ene e e eneeneeneeneereas 2

L@ Lo Y0101 g o (o o 3

(00 0010 TF T gTe 1Y U1 o= ox SRR 12

DEDUGGING YOUF PIOJECT ...ttt sttt sttt ettt sttt st b e s b e s b e b e bbbt s b e st sb et b et e b et ebese et e seebenaebeneas 16

L0001 11T o) o SRR T 20

S (= = 10U 20

Legal Notices

License

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documenta-
tion License [http://www.fsf.org/copyleft/fdl.html], Version 1.1 or any later version published by the Free Software
Foundation with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. Y ou may obtain a copy of
the GNU Free Documentation License from the Free Software Foundation by visiting their Web site
[http://Iwww.fsf.org/] or by writing to: Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

This manual contains short example programs (“the Software”). Permission is hereby granted, free of charge, to any
person obtaining a copy of the Software, to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following condition:

THE SOFTWARE IS PROVIDED “ASI1S’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGSIN THE SOFTWARE.

http://www.fsf.org/copyleft/fdl.html
http://www.fsf.org/copyleft/fdl.html
http://www.fsf.org/

Notices and Acknowledgements

Much of the code here is inspired by and drawn from "Assembly Language for Intel-Based Computers' by Kip
Irvine

Windows, Visua Studio, Visua C++, and MASM are copyright Microsoft
Pentium, x86, and 1A-32 are copyright Intel

Generally, copyrights, patents, and trademarks are owned by their owners.

Introduction

When | first took up assembly programming at the beginning of a computer (read intel) architecture class | couldn't
find a hello world program that would compile as a 32 bit console application using the tools | had for windows;
visual c++ and masm. Most references on the net were 16 bit code and none were with visua studio. This guide
aimsto fill that gap. If you find this useful please drop me an email so | can brag to my grandparents.

Assembly language is the programming language that is closest to the hardware (next to machine code, but that's not
much of a"language"). It is often used in development tools like compilers, when tight controls or extra speed is ne-
cessary. It is also sometimes portrayed as arcane and inapproachable. But is a core course requirement in any re-
spectable computer science program.

Sadly, most assembly books come with a copy of the MS assembler, MASM. This pretty much forces you into a Mi-
crosoft/intel paradigm of programming which is different from other common tools and syntaxes (NASM for ex-
ample. Most assembly books also start you off nicely wrapped in a programmers framework; meaning you include
and use procedures and macros before you ever know what they mean. A clean- room, from scratch approach, while
difficult, is amore effective learning tool for me.

This quick start is targeted at computer students and professionals who are new to assembly programmning, but
have experience in another high level language. It is a good supplement to a MASM based computer text book. A

lay Windows user could probably walk through this guide with no experience what so ever. But programming back-
ground and experience with the command line, compilers, and IDE's will be helpful.

Requirements

There are three requirements to using the development framework suggested in this quick start:

* You need an intel x86 (or compatible) computer running a 32 bit windows (NT,2000,XP,et a). I'm not sure
about 9x/ME.

* You need acopy of Visual C++ installed. I'm using version 6.0sp5 (pre-.NET). YMMV.

* You need a copy of MASM. | use version 6.1.5 in my examples. It's what came with my "Assembly Language
for Intel-Based Computers' text book. YMMYV.

| assume the following locations for masm, visua studio, and your project respectively. You'll need to interpolate as
necessary
e c\masm615

+ C\VS6

* %USERPROFILE%\Desktop\helloworld (example " C:\Documents and Settings\jim\desktop\helloworld")

Creating your project

This section guides you through setting up VC++ to work with assembly. You'll create a workspace and project.
You'll add a.asm and .mak file to the project. When you've completed this section you'll be ready to compile an as-
sembly program.

Start by opening Visual C++. Use FILE->NEW to create a new blank project called 'helloworld'. (see figure 1)

New EE
Files | Projects “Workzpaces | Other Documents |
Elank Workspace ‘Workspace name:
Ihellnwurld
Location:

INGS"-..JIM'\DESKTEIF"'-.heIIDwand J

OF. Cancel

Figure1

Now well add a make file project to this workspace. When the new workspace is open, right click it in the file view
and select "Add New Project To Workspace..." (seefigure 2)

**.. helloworld - Microsoft Yisual C++

File Edit Miew Insert Project Build Tool
B SHE 5 R
I]

add Mew Project to Warkspace. ..

Insert Project inko Workspace., ..

|7 Docking Wigw
Hide

Properties

Figure 2

Choose "Makefile" and set the name to "helloworld". Use the same directory as for your workspace. If your skilled
in VC++ do what you want. Change the radio buttons to read "Add to current workspace..." (see figure 3). Accept

the defaults on the wizard that follows.

MNew EE

Filez Projects | Other Documents |

wie] ATL COM Appiwizard Praject name:

Eﬂj Cluzter Rezource Type ‘Wizard Ihellnwurld

_Eﬂ Cusgtomn &ppiwizard :

Databasze Project Lacatian:

% DievShudia Add-in Wizard INGS'N.JIM'\DESKTEIF"'-.heIIDwand J

4’ Extended Stared Proc \Wizard
[SAP| Extension Wizard

?rl t akefile ™ Create new workspace
MFC Actives Controlizard & Add to cument waorkspace
@ MFC &pptafizard [dll) I | Deperdenchiah
MFC Appwizard [exe] I j

T4 Utility Project
=]"/in32 Application
jWinEE Conzole Application

|E\| Wind2 Dynamic-Link, Library E;tf'j"mﬁ
%] 'win32 Static Library lerﬂz
0K, Cancel
Figure 3

Before we go any further you'll need to have a sample assembly program file and a make file for your project. Code
listings and links follow. Save these files to you Workspace/Project folder.

helloworld.asm [helloworld/helloworld.asm]

; This is a very sinple 32 bit assenbly program
that uses the Wn32 APl to display hello world on the

;. consol e.

TITLE Hello Wrld in Wn32 ASM (hel l oworl d. asm
. 386

.MODEL flat, stdcall

. STACK 4096

These are prototypes for functions that we use
fromthe Mcrosoft library Kernel 32.1ib.

W n32 Consol e handl e

éTD_(lJTPUT_HANDLE EQU - 11 ; predefined Wn APl constant (magic)
Get St dHandl e PROTO, ; get standard handl e

nSt dHandl e: DAWORD ; type of console handle
WiteConsol e EQU <WiteConsol eA> ; alias

helloworld/helloworld.asm

W iteConsol e PROTO
handl e: DWORD,
| pBuf f er: PTR BYTE,

nNunmber Of Byt esToW i t e: DWORD,
| pNuber Of Byt esWitten: PTR DACRD, ;

| pReser ved: DWORD

Exi t Process PROTQ,
dwExi t Code: DWORD

)

; wite a buffer to the consol e
; output handl e
; pointer to buffer
;. size of buffer
num bytes witten
; (not used)

exit program
; return code

gl obal

.data

consol eQut Handl e dd ?
bytesWitten dd ?

nessage db "Hello World", 13, 10,0

1

BYTE: string,

; DWORD: handl e to standard out put device
; DWORD: nunber of bytes witten
with \r, \n, \0O at the end

ptrString: PTR BYTE ;

wal k the null
incrementing eax.

par anet er s:
returns:

; ptrString -
edi,ptrString
eax, 0
L1:
cnp byte ptr [edi], 0
je L2
inc edi
inc eax
jmp L1
L2: ret
procStrLength ENDP

| oop
found the null

)

)

pointer to string

terminated string at ptrString
The value in eax I1s the string | ength

a string pointer
EAX = length of string prtString

; character count

end of string?
yes: junp to L2 and return
no: increment to next byte
i ncrenent counter

next iteration of |oop

junp here to return

Wites a null-terminated string pointed to by EDX to standard

; output using windows calls.

I NVOKE procStrLength, edx
cld

| N\VOKE Wit eConsol e,
consol eCut Handl e,
edx,

1

; return length of string in EAX
; clear the direction flag
; must do this before WiteConsole

; consol e out put handl e

points to string

6

eax, ; string length
of fset bytesWitten, ; returns number of bytes witten
0

popad
ret
procWiteString endp

Mai n procedure. Just initializes stdout, dunps the string, and exits

I NVOKE Get St dHandl e, STD_OUTPUT_HANDLE ; use Wn32 to put
; stdout handle in EAX

nov [consol eQut Handl e], eax ; Put the address of the handle in
; our variable
nov edx, of f set message ; load the address of the message
; into edx for procWiteString
I NVOKE procWiteString ; invoke our wite string method.
; It'"1l check EDX
I NVOKE Exit Process, 0 ; Wndows nmethod to quit
mai n ENDP
END mai n

helloworld.mak [helloworld/helloworld.mak]

A very sinple make file for a windows 32 bit assenbly consol e program

it assenbles and |inks

nmake help is online at:

http://msdn.mcrosoft.conlibrary/default.asp?url=/Ilibrary/en-us/vcug98/ htm /_asug_nacros_and_nma
Assenbl e the code into coff format producing nmap and listing files,

including synbolic debugging info. Try "ml /?" for nobre options

and descriptions

32 bit link our .obj file with the kernel32.1ib file and create an exe file

all: helloworld. exe

hel | owor | d. exe: hel | oworl d. asm
m /nologo /coff /c /zi [/Fl [/Fm $?
1ink32 /nologo /DEBUG /increnental : no /subsystem console /entry: main /out:debug\helloworld.e

The next step isto add downloaded files to the project. Y ou'll add our helloworld.asm assembly program. You'll also
add an nmake makefile, which issimilar so gmake. Right click your project and click "add files.." (see figure 4)

helloworld/helloworld.mak

T

Workspace hellovearld' 1 project(z)
SRS helloworld files
Biuild
Build {selection only)
Clean (selection onlv)
di: Mew Folder, ..
Add Files to Project. ..

Figure 4
Change the file type to "All files' and select helloworld.asm and helloworld.mak (see figure 5).

Insert Files into Project
Look, in: IE kellowaorld j . fji R

_|:I Debug
@ helloworld. asrm

hellu:uw::nrlu:l.clsp
T4l hellowarld, dsw
helloworld. rmak.
helloworld. ncb

File name: "hellowarld.mak” "hellowarld. azm'

Files of lwpe: | AN Files [*.7] j Cancel

Files will be ingerted into falder ttled ‘hellowarld filez" in project "heloworld'.

Figure5

Now your workspace should look something like figure 6.

Workspace hellovearld' 1 project(z)
=-E8 helloworld files
EIE source Files
- hielloworld. asm
- |_7] Header Files

Figure 6

Our final step before we compile is to add paths for executable, library, and include files. This is accomplished via
(TOOLS->OPTIONS- >DIRECTORIES). First add the CAMASM®615 path to the executable list (figure 7). Then
add C:\MASMG615INCLUDE to the include path (figure 8). Finally add C\MASMG615\LIB to the library path
(figure 9). We won't use the include path for this program, but still set it up while we are there.

E ditor I Tabz | Debug | Cornpatibility I Buld Directones | { |q|p

2 x]

Flatform: Show directones for:
Winaz2 x| |Executable files |
Directones: .
C:AYSESCormmonh TOOLS ;I
OIS B Commost TOOL SRR T
TN T Sy Choose Directory
CAWINMNT . _
Directomny name: 0k
CAWINMNT Sy
CAPRDGRA™ I MASMETS Cancel
C:\Program File
= o - M ebwark. .
(7] Examples
(T IMCLUDE
7 LIE
Drrives:

3 3, Find in Files 1)

= e j

Figure 7

10

optons g

E ditor | Tabz I Crebug I Compatibiliby | Buld Directones | { EE

Show directones for;

Platform:

Winad

I [nclude fles

[

Directaories:

X+ ¥

CAVSEMWTIENMCLUDE
CAWVSEMWTIBAMFCAMCLUDE
CAMSEVWCIRNATLMMCLUDE

E hMasmEi'I 5"~E:-:am |ES"-.LI|:I32

OF.

Cancel

Figure 8

11

optons g

E ditor | Tabz I Crebug I Compatibiliby | Buld Directones | { EE

Platform: Show directones for;
Win32 x| |Library files =]
Directories: S I S
C:WWSEMWCIENLIB
CWWSEMWCISMFCALIE

C:AMASMETEALIB

k. Cancel

Figure9

Great! Y ou've successfully established a framework in which to compile and debug your assembly programs. Now
we'll continue to the next section to discuss compilation.

Compiling your project

This section takes a takes a brief moment to describe the assembly program and makefile that comprise the package.
WEe'll compile and run our program at the end.

Let's take another look at that assembly program and dissect it a bit. I'll leave the real discussion of assembly to finer
folksthan | and your text books. But | will give aquick rundown.

1; This is a very sinple 32 bit assenbly program

2 ; that uses the Wn32 APl to display hello world on the
3 ; console.

4

5 TITLE Hello World in Wn32 ASM (hel I oworl d. asn)
6

7 .386

8 . MODEL flat, stdcall

9 . STACK 4096

10

11 ;

12

These are prototypes for functions that we use
13 ; fromthe Mcrosoft library Kernel 32.1ib.

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39 ;

40
41
42
43
44
45
46
47
48
49
50
51
52

53 .

54
55
56
57

; Wn32 Consol e handl e
STD_OUTPUT_HANDLE EQU - 11 ; predefined Wn APl constant (magic)
Get St dHandl e PROTO, ; get standard handl e

nSt dHandl e: DWORD ; type of consol e handl e
WiteConsole EQU <WiteConsol eA> ; alias
W iteConsol e PROTQ, ; Wwite a buffer to the console

hand| e: DWORD, ; output handle

| pBuf fer: PTR BYTE, ; pointer to buffer

nNurber O Byt esToW i t e: DWORD, ; size of buffer

| pNurmber OF Byt esWitten: PTR DAWORD, ; num bytes witten

| pReser ved: DWORD ; (not used)
Exi t Process PROTO, ; exit program

dwExi t Code: DWORD ; return code
gl obal data
.data
consol eQut Handl e dd ? ; DWORD: handl e to standard out put device
bytesWitten dd ? ; DWORD: nunber of bytes witten
nessage db "Hello World", 13,10,0 ; BYTE string, with \r, \n, \0 at the end

code

brocStrLength PROCC USES edi,

58 ;

65

67
68

70
71
72
73
74
75
76
77
78
79
80
81

83
84

59 ;

61 ;
62 ;
63 ;
64 ;

ptrString: PTR BYTE ; pointer to string
; walk the null term nated string at ptrString
; increnenting eax. The value in eax is the string length
; paraneters: ptrString - a string pointer
; returns: EAX = length of string prtString
nov edi, ptrString
nov eax, 0 ; character count
L1: ; loop
cnp byte ptr [edi],0 ; found the null end of string?
je L2 ; yes: junp to L2 and return
inc edi ; no: increnent to next byte
i nc eax ; increnent counter
jmp L1 ; next iteration of |oop
L2: ret ; junp here to return
procStrLengt h ENDP

; Wites a null-termnated string pointed to by EDX to standard
; output using wi ndows calls.

13

85 ;

86
87
88
89
90
91
92
93
94
95
96
97
98
99

I N\VOKE procStrLengt h, edx ; return length of string in EAX
cld ; clear the direction flag
; must do this before WiteConsol e

| N\VOKE Wit eConsol e,
consol eQut Handl e, ; consol e output handle
edx, ; points to string
eax, ; string length
of fset bytesWitten, ; returns number of bytes witten
0

popad

100 ret

101 procWiteString endp

(0 i e I
103

104

105

106

O A e e R R
108 mai n PROC

109 ;

110 ; Main procedure. Just initializes stdout, dunps the string, and exits.

i e i R R
112 I NVOKE Get St dHandl e, STD_OUTPUT_HANDLE ; use Wn32 to put

113 ; stdout handle in EAX

114

115 mov [consol eCut Handl e] , eax ; Put the address of the handle in
116 ; our variable

117

118 nmov edx, of f set message ; load the address of the nessage
119 ; into edx for procWiteString
120

121 I NVOKE procWiteString ; invoke our wite string nethod.
122 ; 1t 11 check EDX

123

124 I NVOKE Exit Process, 0 ; Wndows nethod to quit

125

126 mai n ENDP

i B i i i
128

129 END nai n

break down by line

1-3 are comments. Note that comments begin with a';' character

5-32 are header data including directives, function prototypes, and constants.

44-46 are global variables

56-101 are procedures to calculate a string length and write a string to the console

108-126 are the main procedure that starts the program. We'll break it down further

. ;l:)LIZ 115 uses the windows api to get an address to write to standard out. Then we store it in a global vari-
e

e 118, 121 calls our procWriteString procedure to display the global string "Hello World".

14

e 124 callsWindows' ExitProcess to quit the program gracefully.
» 80indicatesthe end of the program and file.

Now that we can see the basic form of an assembly program it should be easy to reference it's constructs in manuals
and build on the at basic shell. Now, let's have a second look at the helloworld.mak makefile.

1 # Avery sinple make file for a windows 32 bit assenbly consol e program

2 # it assenbles and |inks

3

4 # nmake help is online at:

5 # http://nsdn. mcrosoft.conllibrary/default.asp?url=/I1ibrary/en-us/vcug98/ htm /_asug_nacros_and_
6

7 # Assenble the code into coff format producing nap and listing files,

8 # including synbolic debugging info. Try "ml /?" for nore options

9 # and descri ptions

10

11 # 32 bit link our .obj file with the kernel32.1ib file and create an exe file

12

13 all: helloworld. exe

14

15 hel | owor | d. exe: hel | owor| d. asm

16 m /nologo /coff /c /Z [Fl [/Fm$?

17 I ink32 /nol ogo /DEBUG /increnental : no /subsystem consol e /entry: main /out:debug\ hel | oworl

If you've ever worked with source distributions this format should look vaguely familiar. But let's detail it.

» 1-1 are comments. Comments begin with the '# character Comments are goooodddddd!
» 13 definesthe default target 'all’ and says that it depends on a sub-target helloworld.exe.

» 15 defines the target 'helloworld.exe' and specifies that it depends on the helloworld.asm file. That means nmake
will be smart enough to know to recompile if you change the ASM file.

e 16 isthe first command run for the 'helloworld.exe' target. It runs the assembler on helloworld.asm to create a
coff object file.

* 17 isthe second command run for the 'helloworld.exe' target. It runs the 32bit linker to link helloworld.obj with
kernel 32.1ib to make areal program, helloworld.exe!!

Now that we have a better idea how the assembly file is formed and how the makefile helps compile it let's move on
the glory moment, compilation and execution. If everything is setup correctly you should be able to click Build icon
on the toolbar to compile the program (see figure 10).

< B K] -
|E=ui|-:I|:F?j||

Figure 10
The build panel should look like figure 11.

15

Configuration: helloworld — Win32 Debug
Hicrosoft (R) Program Maintenance Utility Version 6.00.8168.0
Copyright (C) Hicrosoft Corp 1988-1998. All rights reserved.

nl snologo scoff sc #Z1 #Fl #Fm hellovorld. asm

Assembling: helloworld.asn
hellowvorld.asn(6) : warning A4011: multiple MODEL directives found : .MODEL ignored

1ink32 rnologo #DEBUG ~“incremental no <subsystem:console Aentry:main “out:debug-helloworld.exe helloworld.ocbj kernel32. lib

[

helloworld. exe — 0 erroris). 1 warningis)
AT, Build 4 Tebug 3,_Find in Files 1 % Find in Files2 & Results J IEX]
Figure 11

Finally, the climax. Run your compiled program by clicking the execute button (!) (see figure 12).

|em= s uam

iE:-:ecute Program {CtrI+F5]||

Figure 12

If al goeswell you'll see a DOS/CMD box like in the following picture. (see figure 13).

\Documents and Settings’ jim'Desktop' helloworld',Debug’ helloworld.exe™

Hello Uorld
Prezs any key to continue_

Figure 13

Excellent! Now we know our framework is capable of compiling and running an assembly program and we have a
working example of code and a make file. We're ready to move on to debugging the program and examining its guts.

Debugging your project

Debugging can be an especialy powerful tool for learning programming. It is essentialy the process of walking
through your program in different orders and examining the contents of the computer's storage areas. Well take a
brief walk through atypical debug session using helloworld.exe.

We start our debugging by setting a break point. This is aline of code where the execution should pause until you
16

decide to continue. From this point to can examine the contents of CPU registers or memory. Put your cursor on line
112 and click the Add Breakpoint tool button. Notice the red dot that appears next to the line to signal the break-
point. (see figure 14)

=l AR OEmS L uam

Hain procedure. Just initializes s=tdout and dumnps the =tring

. | IHYOEE GetStdHandle, STD OUTPUT _HANDIE ; Windows method to put

mnow [consoleCutHandle].eax ; Put the addres= of the
pu=h edx
Figure 14

Now start the debugger by clicking the debug toolbar icon (see gigure 15)
1 - Bl BER.] .

Figure 15

Let's take a moment to notice a couple of things. Once you start the debugger. A couple of new debug windows will
appear (depending on your configuration) (see figure 16). Thisis agood view for C++, but isn't great for assembly.
Right click aframe of one of the new windows and make it such that you have the "Registers' and "Memory" dock-
lets visible (see figure 17).

17

**. helloworld - Microsoft Yisual C++ [break]

elloworld.asm]

File Edit Wiew Insert Project Debug Tools Window Help

B EE F BB BT | Gbesw

=N

[Glabals]

L" (&Il global members]

L”[No members - Create Mew Class...]

R

| : Main procedurs. Just initializes stdout and dumps the string j
W’orkspace ‘helloword': 1 project(s) = INVOKE GetStdHandle, STD OUTPUT _HANDLE ; Windows method to put the stdout handl
=] hellowolld files nov [consoleCutHandle]. sax Put the address of the handle in our =
EE Source Files h ed
: push ed=x
hellm:.vnrld S5 mov edx,offset nessage ;| load the address of the nessage into edx where UriteSt
(20 Header Files INVOKE WriteString invoke our write string method. It'll checlk EDX
(2] Resource Files pop ed=
g helloword mak. X X
INVOKE ExitProcess. [Windows method to bail
main ENDE J
END main
B8 Classiew I FiIeViewI 4]] _'lﬂ
x| Cmteﬂmain“ =l XI["EAY = 00000000 EBX = 7EFDEO00 ECK = 00000101 <] |2[Name Value
I Ol EDE = FFFFFFFF ESI = 00000000 EDI = 00000000
Name Walue EIF = 00401038 ESP = 0D012FFC4 EEP = O012FFFO
EFL = 00000246
MMO = 0000000000000000 MM1 = 0000000000000000
MMZ = 0000000000000000 MM3 = 0000000000000000
MM4 = 0000000000000000 MMS = 0000000000000000
MM& = 0000000000000000 MM? = 0000000000000000
HMMO = 00000000000000000000000000000000
HMM1 = 00000000000000000000000000000000
HMHM2 = 00000000000000000000000000000000
HMM3 = 00000000000000000000000000000000
X¥MM4 = 0D0000O0OOO0OOOODOODOOOOOOOOOOOOD000
EMMS = 00000000000000000000000000000000
XMM6 = 00000000000000000000000000000000
HMH? = 00000000000000000000000000000000
CS = 001B DS = 0023 ES = 0023 55 = 0023
FS = 0038 G5 = 0000 OV=0 UP=0 EI=1 PL=0 ZR=1
AC=0 PE=1 C¥=0
EMM0OO = +0.00000E+000 XMMO1 = +0.00000E+000
EMM0OZ = +40.00000E+000 XMMO3 = +0.00000E+000
- EMM10 = +0.00000E+000 XMM11 = +0.00000E+000
Ak Auto 4 Loocals j this YMMI2 = an nAARAFonnn FMM13 = +n nnnnnFennn (20 AT wstoht fWatch2 j Wateh iiatchd /-
Ready S
Figure 16

18

**., helloworld - Microsoft ¥isual C++ [break] -

[Eile:

Edit Wiew Insert Project Debug Tools Window Help

elloworld.asm]

B eR@ ¢ BE| DR Gt

| w

29 Source Files

helloworld files

(2 Header Files
(2 Resource Files
helloviord mak

nov [consolefutHandle] . eax

push sd=x

nov e=dxz, offset message
IHVOEE WriteString

pop ed=

IHVOKE ExitProcess. [

Vindows method to put the stdout handl
: Put the address of the handle in our w

Windows method to bail

invoke our write =s=tring method.

[Globalz) L” (&0l global members) jl[No mernbers - Create Mew Class...] j “‘:(A |JJ @ ! @ m
== Hain procedure. Just initializes stdout and dumps the string
Workspace helloworld': 1 praject(s] o ’ IHVOKE GetStdHandle, STD OUTPUT_HANDLE

load the address of the message into edx where UriteSt

It'1ll check EDX

-

I

nain ENDP
END main
'I:CIassViewlFiIeViewl [« 1 _’ILI
X|["EAY = 00000000 EBX = 7FEDEOO0 BCK = 00000101] Addiess: [D0403008
M| EDX = FFFFFFFF ESI = 00000000 EDI = 00000000 A
EIP = (00401038 ESP = 0012FFC4 EBP = 0012FFFQ0 || 00403008 48 65 6C 6C 6F 20 57 6F 72 6C 64 0D Hello World. a
EFL = (00000246 fosnont a4 00 00 00 00 00 00 00 00 00 oo 00 ..o ..., ..
MMO = 0000000000000000 MMl = 0000000000000000 Qukpuk p o0 oo o0 00 00 00 00 00 00 o0 o0
MM2 = 0000000000000000 MM3 = 0000000000000000 Watch O o0 oo o0 00 00 00 00 00 00 0o 00
MM4 = 0000000000000000 MMS = 0000000000000000 O o0 oo o0 00 00 00 00 00 00 0000 .o,
MME = 0000000000000000 HM? = 0000000000000000 Variables O o0 oo o0 00 00 00 00 00 00 0o 00
EMMO = 00000000000000000000000000000000 [Registers O o0 oo o0 00 00 00 00 00 00 0000 .o,
EMM1 = 00000000000000000000000000000000 O o0 oo o0 00 00 00 00 00 00 0o 00
EMMZ = 00000000000000000000000000000000 v Memary O o0 oo o0 00 00 00 00 00 00 0000 .o,
EMM3 = 00000000000000000000000000000000 Call Stack O o0 oo o0 00 00 00 00 00 00 0o 00
EMM4 = 00000000000000000000000000000000 O o0 oo o0 00 00 00 00 00 00 0000 .o,
EMMS = 00000000000000000000000000000000 v wotkspacs O o0 oo o0 00 00 00 00 00 00 0o 00
EMME = 00000000000000000000000000000000 O o0 oo o0 00 00 00 00 00 00 0000 .o,
EMM7 = 00000000000000000000000000000000 v standard O o0 oo o0 00 00 00 00 00 00 0o 00
CS = 001B D5 = 0023 ES = 0023 55 = 0023 FS = 0038 Build O o0 oo o0 00 00 00 00 00 00 0000 .o,
G5 = 0000 OV=0 UP=0 EI=1 PL=0 ZR=1 AC=0 FE=1 C¥=0 O o0 oo o0 00 00 00 00 00 00 0o 00
EMMOO = +0.00000E+000 EMMO1 = +0.00000E+000 v Build Minigar O o0 oo o0 00 00 00 00 00 00 0000 .o,
EMMOZ = +0.00000E+000 XMMO3 = +0.00000E+000 ATL O o0 oo o0 00 00 00 00 00 00 0o 00
EMMI10 = +0.00000E+000 XMM11 = +0.00000E+000 O o0 oo o0 00 00 00 00 00 00 0000 .o,
EMM12 = +0.00000E+000 XMM13 = +0.00000E+000 B O o0 oo o0 00 00 00 00 00 00 0o 00
FMM2N = 40 NNANAFLANN FHM21 = 40 NNNNAF+0nn .:J Edit N.nNn nn nn nn nnnn nnnnnnnnnn .ZJ
Debug /A
Erovise
Database
[v WizardBar
Customize. ..
Figure 17

Y ou can use the "Step Over" button on the debug toolbar to execute the next line (see figure 18). Watch the registers
panel when you do that. Continue to click that button until you get to line 121 where "procWriteString" is invoked.
Look at the value of the EDX register in the registers window. Cut and paste it's value into the address box of the
memory window. You'll see our message "Hello World" is stored at that memory address. This tells you that the
valuein EDX isthe address of the our string variable (figure 19). Pretty handy huh?

@

> &~ B

|Step Over (F10)|

Figure 18

19

i EDX = 00403008 =] | & ageres 00403008
[[010300 16 €5 6C €C GF 20 57 CF 72 CC 61 O Hello World. X

R El

ieadu ["Cn74.Col1[RECICOLTOVRIREAD 4

Figure 19
Now, that you've seen the meat of debugging you can halt the debugger, let the program run to completion, or con-

tinues stepping to the end of the code. Y ou should now understand how to use debugging to examine the contents of
arunning program.

Conclusion

We've now gone completely from idea, to code, to testing using MS Visual C++ and MASM for development. This
frame work of assembly file and make file is enough for us to spring board into other more interesting projects.
Thereis till alot to learn about processors and different architectures. This quick start should provide you with the
stepping stones you need to continue studying the mg/intel architecture.

References

These are books, papers, and sitesthat | drew on for this article.

List of References.

1. "Assembly Language for Intel Based Computers' 4th ed by Kip R lIrvine
[http://www.nuvisionmiami.com/books/asm/index.html]

2. MS Assembler Ref
[http://msdn.microsoft.com/library/en-us/vemasm/html/vcoriMicrosoftAssembl erM acroL anguage.asp]

3. MS nmake ref
[http://msdn.microsoft.com/library/en-us/vcug98/html/_asug_overview.3a .nmake reference.asp]

4. Intel Pentium 4 Architecture Ref [http://www.intel.com/design/pentium4/M ANUAL S/index.htm]

20

http://www.nuvisionmiami.com/books/asm/index.html
http://msdn.microsoft.com/library/en-us/vcmasm/html/vcoriMicrosoftAssemblerMacroLanguage.asp
http://msdn.microsoft.com/library/en-us/vcug98/html/_asug_overview.3a_.nmake_reference.asp
http://www.intel.com/design/pentium4/MANUALS/index.htm

